Rút gọn A
A={[(x√x-1)/(x-√x) - (x√x +1)/(x+√x)]}/ (x+2)/(x-2)
Rút gọn A
A=\(\dfrac{\sqrt{x}-1}{x-1}+\dfrac{x+\sqrt{x}}{x+2\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x+1}}\)
\(A=\dfrac{1}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
Rút gọn A
A = \(\dfrac{x^2}{x^2-1}-\dfrac{2x+1}{1-x^2}-\dfrac{x^2+1}{\left(x^2+1\right)\left(x-1\right)}\)
\(=\dfrac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x-1}\)
\(=\dfrac{x+1-1}{x-1}=\dfrac{x}{x-1}\)
Rút gọn A
A=\(\dfrac{2x+4}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}+\dfrac{2}{1-\sqrt{x}}\)
help
\(A=\dfrac{2x+4}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}+\dfrac{2}{1-\sqrt{x}}\)
\(=\dfrac{2x+4}{\sqrt{x^3}-1}+\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}-\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2x+4}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{2\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{2x+4+x+\sqrt{x}-2-2x-2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
#Toru
A=\(\dfrac{2x+4}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}-\dfrac{2}{\sqrt{x}-1}=\dfrac{2x+4+\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-2\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{2x+4+x+\sqrt{x}-2-2x-2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{-x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
Rút gọn A
A=\(\left(\dfrac{1}{x+1}-\dfrac{1}{x^2-1}\right)\cdot\dfrac{x+1}{x-2}\)
A=\(\left(\dfrac{1}{x+1}-\dfrac{1}{x^2-1}\right).\dfrac{x+1}{x-2}\)
=\(\left(\dfrac{1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{1}{x^2-1}\right).\dfrac{x+1}{x-2}\)
=\(\left(\dfrac{x-1}{\left(x+1\right)\left(x-1\right)}-\dfrac{1}{x^2-1}\right).\dfrac{x+1}{x-2}\)
=\(\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}.\dfrac{x+1}{x-2}\)
=\(\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)}\)
=\(\dfrac{1}{x-1}\)
rút gọn A
A = \(\left(\dfrac{2}{x-\sqrt{x}}+\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{2\sqrt{x}-x}\)
\(ĐK:x>0;x\ne1\\ A=\dfrac{2+x-1-x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}+1}\\ A=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}+1}=\dfrac{\left(1-\sqrt{x}\right)\left(2-\sqrt{x}\right)}{\sqrt{x}+1}\)
\(A=\left(\dfrac{2+x-1-x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}+1}\)
\(=\dfrac{-\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Rút gọn A
A = \(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Rightarrow A=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Rightarrow A=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Rightarrow A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(ĐKXĐ:x\ne4;x\ne9\right)\)
\(=\dfrac{2\sqrt{x}-9}{x-3\sqrt{x}-2\sqrt{x}+6}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x-2}\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Vậy với ĐKXĐ \(x\ne4;x\ne9\) thì biểu thức \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(A=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\)=\(\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)=\(\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\).
Cho M = (√x-1/x-1 + 2-2√x/x√x+x-√x-1)÷(√x+2/x+√x-2 - 2/x-1)
Rút gọn M
Thì sau khi rút gọn M= √x - 1 đúng không
Rút gọn biểu thức sau. Với giá trị nào của x, giá trị của biểu thức rút gọn là dương?
(\(\dfrac{\dfrac{x}{x+1}}{\dfrac{x^2}{x^2+x+1}}\) - \(\dfrac{2x+1}{x^2+x}\))\(\dfrac{x^2-1}{x-1}\)
\(\left(\dfrac{\dfrac{x}{x+1}}{\dfrac{x^2}{x^2+x+1}}-\dfrac{2x+1}{x^2+x}\right)\dfrac{x^2-1}{x-1}\)ĐK : \(x\ne\pm1\)
\(=\left(\dfrac{x}{x+1}.\dfrac{x^2+x+1}{x^2}-\dfrac{2x+1}{x\left(x+1\right)}\right)\left(x+1\right)=\left(\dfrac{x^2+x-1}{x^2+x}-\dfrac{2x+1}{x\left(x+1\right)}\right)\left(x+1\right)\)
\(=\left(\dfrac{x^2+x-1-2x-1}{x\left(x+1\right)}\right)\left(x+1\right)=\dfrac{x^2-3x-2}{x}\)
à xin lỗi mình nhầm dòng cuối
\(=\dfrac{x^2-x-2}{x}=\dfrac{\left(x+1\right)\left(x-2\right)}{x}\)
Để biểu thức trên nhận giá trị dương khi
\(\dfrac{\left(x+1\right)\left(x-2\right)}{x}>0\)bạn tự xét TH cả tử và mẫu nhé, mình đánh trên này bị lỗi
1. Cho biểu thức : Q = ( √x + 2 / x +2 √x + 1 - √x - / x -1) ( x+ √x)
a) Rút gọn biểu thức Q
b) Tìm các gtri nguyên x dể Q nhận gtri nguyên
2. Cho biểu thức : A= ( 1/ √x +2 + 1/ √x +2 + 1/ √x -2 ) ( √x -2 /x
a) Tìm đk xác định và rút gọn A
b) Tìm tất cả các gtri của x để A > 1/2
MÌNH CẦN GẤP TRONG TỐI NI NHA
Bài 1:
a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\dfrac{2x}{x-1}\)