\(3-\dfrac{x}{2}=\dfrac{3}{2}-1\dfrac{5}{6}\)
1/ \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
2/ \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)
3/ \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)
4/ \(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
5/ \(\dfrac{x-3}{9}-\dfrac{x+2}{6}=\dfrac{x+4}{18}-\dfrac{1}{2}\)
1: Ta có: \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
\(\Leftrightarrow2x-8+12x=4x-2\)
\(\Leftrightarrow10x=6\)
hay \(x=\dfrac{3}{5}\)
2: Ta có: \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)
\(\Leftrightarrow15x-6-30=10-20x\)
\(\Leftrightarrow35x=46\)
hay \(x=\dfrac{46}{35}\)
3: Ta có: \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)
\(\Leftrightarrow3x-6-4=6x-6\)
\(\Leftrightarrow-3x=4\)
hay \(x=-\dfrac{4}{3}\)
1)\(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
\(\Leftrightarrow\dfrac{\left(x-4\right).2}{3.2}+\dfrac{2x.6}{6}=\dfrac{4x-2}{6}\)
\(\Rightarrow2x-8+12x=4x-2\\ \Leftrightarrow10x=6\\ \Leftrightarrow x=\dfrac{3}{5}\)
4: Ta có: \(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
\(\Leftrightarrow40x-20+45x-30=48x-36\)
\(\Leftrightarrow37x=14\)
hay \(x=\dfrac{14}{37}\)
5: Ta có: \(\dfrac{x-3}{9}-\dfrac{x+2}{6}=\dfrac{x+4}{18}-\dfrac{1}{2}\)
\(\Leftrightarrow2x-6-3x-6=x+4-9\)
\(\Leftrightarrow-x-x=-5-12=-17\)
hay \(x=\dfrac{17}{2}\)
g) \(3-\dfrac{2}{2x-3}=\dfrac{2}{5}=\dfrac{2}{9-6x}-\dfrac{3}{2}\)
h) \(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\)
i) \(x^2-\dfrac{7}{6}x+\dfrac{1}{3}=0\)
k) \(\dfrac{13}{x-1}+\dfrac{5}{2x-2}-\dfrac{6}{3x-3}\)
m) \(\left(\dfrac{3}{2}-\dfrac{2}{-5}\right):x-\dfrac{1}{2}=\dfrac{3}{2}\)
n) \(\left(\dfrac{3}{2}-\dfrac{5}{11}-\dfrac{3}{13}\right)\left(2x-2\right)=\left(-\dfrac{3}{4}+\dfrac{5}{22}+\dfrac{3}{26}\right)\)
4 câu đầu hìn như sai đề :v
`m)(3/2-2/(-5)):x-1/2=3/2`
`<=>(3/2+2/5):x=3/2+1/2=2`
`<=>19/10:x=2`
`<=>x=19/10:2=19/20`
`n)(3/2-5/11-3/13)(2x-2)=(-3/4+5/22+3/26)`
`<=>(3/2-5/11-3/13)(2x-2)+3/4-5/22-3/26=0`
`<=>(3/2-5/11-3/13)(2x-2)+1/2(3/2-5/11-3/13)=0`
`<=>(3/2-5/11-3/13)(2x-2+1/2)=0`
Mà `3/2-5/11-3/13>0`
`<=>2x-2+1/2=0`
`<=>2x-3/2=0`
`<=>2x=3/2<=>x=3/4`
h, \(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\left(x\ne0\right)\)
\(\Leftrightarrow\dfrac{x^2}{2}-1=\dfrac{x}{12}\)
\(\Leftrightarrow x^2-\dfrac{x}{6}-2=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{12}+\dfrac{1}{144}-\dfrac{289}{144}=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{12}\right)^2=\dfrac{289}{144}\)
\(\Leftrightarrow x=\dfrac{1}{12}\pm\dfrac{\sqrt{289}}{12}\)
Vậy ...
i, \(\Leftrightarrow x^2-\dfrac{2.x.7}{12}+\dfrac{49}{144}-\dfrac{1}{144}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{2}\right)^2=\dfrac{1}{144}\)
\(\Leftrightarrow x=\dfrac{7}{2}\pm\dfrac{1}{12}\)
Vậy ...
h) Ta có: \(\dfrac{x}{2}-\dfrac{1}{x}=\dfrac{1}{12}\)
\(\Leftrightarrow\dfrac{x^2-2}{2x}=\dfrac{1}{12}\)
\(\Leftrightarrow12x^2-24-2x=0\)
\(\Delta=\left(-2\right)^2-4\cdot12\cdot\left(-24\right)=1156\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{2-34}{24}=\dfrac{-8}{3}\\x_2=\dfrac{2+34}{24}=\dfrac{36}{24}=\dfrac{3}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{8}{3};\dfrac{3}{2}\right\}\)
m) Ta có: \(\left(\dfrac{3}{2}-\dfrac{2}{-5}\right):x-\dfrac{1}{2}=\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{19}{10}:x=2\)
hay \(x=\dfrac{19}{20}\)
Vậy: \(S=\left\{\dfrac{19}{20}\right\}\)
Tìm x, biết
a)\(\dfrac{1}{2}\)x\(x\)-\(\dfrac{7}{3}\)=\(\dfrac{-5}{6}\)+\(\dfrac{3}{4}\)x\(x\)
b)\(\dfrac{4}{5}\)x\(x\)-\(\dfrac{6}{5}\)=\(\dfrac{1}{2}\)+\(\dfrac{3}{2}\)x\(x\)
c)\(\dfrac{2}{5}\)x(3x\(x\)+\(\dfrac{3}{4}\))=\(1\dfrac{1}{5}\)-\(\dfrac{1}{3}\)x\(x\)
d)2x(3x\(x \)+\(\dfrac{3}{4}\))+\(\dfrac{4}{5}\)=\(\dfrac{1}{2}\)-2x\(x\)
giúp mình giải bài toán trên với. Mình cảm ơn rất nhiều
a: =>1/2x-3/4x=-5/6+7/3
=>-1/4x=14/6-5/6=3/2
=>x=-3/2*4=-6
b: =>4/5x-3/2x=1/2+6/5
=>-7/10x=17/10
=>x=-17/7
c: =>6/5x+6/20=6/5-1/3x
=>6/5x+1/3x=6/5-3/10=12/10-3/10=9/10
=>x=27/46
d: =>6x+3/2+4/5=1/2-2x
=>8x=1/2-3/2-4/5=-1-4/5=-9/5
=>x=-9/40
Bài 3:
a) \(\dfrac{2x-1}{5}\)-\(\dfrac{x-2}{3}\)
=\(\dfrac{x+7}{15}\)
b) \(\dfrac{x+3}{2}\)-\(\dfrac{x-1}{3}\)
=\(\dfrac{x+5}{6}\)+1
c) \(\dfrac{2\left(x+5\right)}{3}\)+\(\dfrac{x+12}{2}\)
-\(\dfrac{5\left(x-2\right)}{6}\)=\(\dfrac{x}{3}\)+11
d) \(\dfrac{x-4}{5}\)+\(\dfrac{3x-2}{10}\)-x
=\(\dfrac{2x-5}{3}\)-\(\dfrac{7x+2}{6}\)
e) \(\dfrac{\left(2x-3\right)\left(2x+3\right)}{8}\)
=\(\dfrac{\left(x-4^{ }\right)^2}{6}\)+\(\dfrac{\left(x-2\right)^2}{3}\)
d) \(\dfrac{7x^2-14x-5}{15}\)
=\(\dfrac{\left(2x+1\right)^2}{5}\)-\(\dfrac{\left(x-1\right)^2}{3}\)
e) \(\dfrac{\left(7x+1\right)\left(x-2\right)}{10}\)+\(\dfrac{2}{5}\)
=\(\dfrac{\left(x-2\right)^2}{5}\)+\(\dfrac{\left(x-1\right)\left(x-3\right)}{2}\)
a) Ta có: \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{15}\)
\(\Leftrightarrow\dfrac{3\left(2x-1\right)}{15}-\dfrac{5\left(x-2\right)}{15}=\dfrac{x+7}{15}\)
\(\Leftrightarrow6x-3-5x+10-x-7=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\in R\)}
a,\(\dfrac{2}{3}\)x\(\dfrac{5}{2}\):\(\dfrac{9}{5}\)
b,\(\dfrac{1}{3}\)x\(\dfrac{1}{4}\)+\(\dfrac{5}{6}\)
c,\(\dfrac{1}{2}\)-\(\dfrac{7}{8}\):\(\dfrac{7}{4}\)
d,\(\dfrac{6}{5}\)-\(\dfrac{4}{5}\)x\(\dfrac{3}{2}\)
1) \(\dfrac{5x-2}{3}\)= \(\dfrac{5-3x}{2}\)
2) \(\dfrac{x+4}{5}\) - x + 4 = \(\dfrac{x}{3}\) - \(\dfrac{x-2}{2}\)
3) \(\dfrac{10x+3}{12}\)= 1 + \(\dfrac{6+8x}{9}\)
4) \(\dfrac{x+1}{3}\)- \(\dfrac{x-2}{6}\) = \(\dfrac{2x-1}{2}\)
2) Ta có: \(\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)
\(\Leftrightarrow\dfrac{6\left(x+4\right)}{30}-\dfrac{30\left(x-4\right)}{30}=\dfrac{10x}{30}-\dfrac{15\left(x-2\right)}{30}\)
\(\Leftrightarrow6x+24-30x+120=10x-15x+30\)
\(\Leftrightarrow-24x+144=-5x+30\)
\(\Leftrightarrow-24x+144+5x-30=0\)
\(\Leftrightarrow-19x+114=0\)
\(\Leftrightarrow-19x=-114\)
hay x=6
Vậy: x=6
3) Ta có: \(\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
\(\Leftrightarrow\dfrac{3\left(10x+3\right)}{36}=\dfrac{36}{36}+\dfrac{4\left(6+8x\right)}{36}\)
\(\Leftrightarrow30x+9=36+24+32x\)
\(\Leftrightarrow30x+9-60-32x=0\)
\(\Leftrightarrow-2x-51=0\)
\(\Leftrightarrow-2x=51\)
hay \(x=-\dfrac{51}{2}\)
Vậy: \(x=-\dfrac{51}{2}\)
4) Ta có: \(\dfrac{x+1}{3}-\dfrac{x-2}{6}=\dfrac{2x-1}{2}\)
\(\Leftrightarrow\dfrac{2\left(x+1\right)}{6}-\dfrac{x-2}{6}=\dfrac{3\left(2x-1\right)}{6}\)
\(\Leftrightarrow2x+2-x+2=6x-3\)
\(\Leftrightarrow x+4-6x+3=0\)
\(\Leftrightarrow-5x+7=0\)
\(\Leftrightarrow-5x=-7\)
hay \(x=\dfrac{7}{5}\)
Vậy: \(x=\dfrac{7}{5}\)
1) \(\dfrac{5x-2}{3}=\dfrac{5-3x}{2}\)
\(2\left(5x-2\right)=3\left(5-3x\right)\)
\(10x-4=15-9x\)
\(10x+9x=15+4\)
\(19x=19\)
\(x=1\)
Vậy \(x=1\)
2) Ta có: ⇔6(x+4)30−30(x−4)30=10x30−15(x−2)30⇔6(x+4)30−30(x−4)30=10x30−15(x−2)30
⇔6x+24−30x+120=10x−15x+30⇔6x+24−30x+120=10x−15x+30
⇔−24x+144=−5x+30⇔−24x+144=−5x+30
⇔−24x+144+5x−30=0⇔−24x+144+5x−30=0
⇔−19x+114=0⇔−19x+114=0
⇔−19x=−114⇔−19x=−114
hay x=6
Vậy: x=6
3) Ta có: ⇔3(10x+3)36=3636+4(6+8x)36⇔3(10x+3)36=3636+4(6+8x)36
⇔30x+9=36+24+32x⇔30x+9=36+24+32x
⇔30x+9−60−32x=0⇔30x+9−60−32x=0
⇔−2x−51=0⇔−2x−51=0
⇔−2x=51⇔−2x=51
hay x=−512x=−512
4) Ta có: ⇔2(x+1)6−x−26=3(2x−1)6⇔2(x+1)6−x−26=3(2x−1)6
⇔2x+2−x+2=6x−3⇔2x+2−x+2=6x−3
⇔x+4−6x+3=0⇔x+4−6x+3=0
⇔−5x+7=0⇔−5x+7=0
⇔−5x=−7⇔−5x=−7
hay x=75
Tìm số nguyên x, biết:
a) \(-4\dfrac{3}{5}\). \(2\dfrac{4}{3}\) < x < \(-2\dfrac{3}{5}\) : \(1\dfrac{6}{15}\)
b) \(-4\dfrac{1}{3}\).(\(\dfrac{1}{2}\)-\(\dfrac{1}{6}\)) < x < - \(\dfrac{2}{3}\).(\(\dfrac{1}{3}\) - \(\dfrac{1}{2}\) - \(\dfrac{3}{4}\))
a) Ta có \(-4\dfrac{3}{5}\cdot2\dfrac{4}{3}=-\dfrac{23}{5}\cdot\dfrac{10}{3}=-\dfrac{46}{3}\) và \(-2\dfrac{3}{5}\div1\dfrac{6}{15}=-\dfrac{13}{5}\div\dfrac{7}{5}=-\dfrac{13}{7}\)
Do đó \(-\dfrac{46}{3}< x< -\dfrac{13}{7}\)
Lại có \(-\dfrac{46}{3}\le-15\) và \(-\dfrac{13}{7}\ge-2\)
Suy ra \(-15\le x\le-2\), x ϵ Z
b) Ta có \(-4\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=-\dfrac{13}{3}\cdot\dfrac{1}{3}=-\dfrac{13}{9}\) và \(-\dfrac{2}{3}\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)=-\dfrac{2}{3}\cdot\dfrac{-11}{12}=\dfrac{11}{18}\)
Do đó \(-\dfrac{13}{9}< x< \dfrac{11}{18}\)
Lại có \(-\dfrac{13}{9}\le-1\) và \(\dfrac{11}{18}\ge0\)
Suy ra \(-1\le x\le0\), x ϵ Z
b, -4\(\dfrac{1}{3}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{6}\)) < \(x\) < - \(\dfrac{2}{3}\).(\(\dfrac{1}{3}\) - \(\dfrac{1}{2}\) - \(\dfrac{3}{4}\))
- \(\dfrac{13}{3}\).\(\dfrac{1}{3}\) < \(x\) < - \(\dfrac{2}{3}\).(-\(\dfrac{11}{12}\))
- \(\dfrac{13}{9}\) < \(x\) < \(\dfrac{11}{18}\)
\(x\) \(\in\) { -1; 0; 1}
a, -4\(\dfrac{3}{5}\).2\(\dfrac{4}{3}\) < \(x\) < -2\(\dfrac{3}{5}\): 1\(\dfrac{6}{15}\)
- \(\dfrac{23}{5}\).\(\dfrac{10}{3}\) < \(x\) < - \(\dfrac{13}{5}\): \(\dfrac{21}{15}\)
- \(\dfrac{46}{3}\) < \(x\) < - \(\dfrac{13}{7}\)
\(x\) \(\in\) {-15; -14;-13;..; -2}
a)\(\dfrac{2}{x+2}-\dfrac{1}{x+3}+\dfrac{2x+5}{\left(x+2\right)\left(x+3\right)}\)
b)\(\dfrac{2}{x+1}-\dfrac{1}{x+5}+\dfrac{2x+6}{\left(x+5\right)\left(x+1\right)}\)
c)\(\dfrac{-6}{x^2-9}-\dfrac{1}{x+3}+\dfrac{3}{x-3}\)
d)\(\dfrac{x}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\)
k) 8 - \(\dfrac{x-2}{2}\) = \(\dfrac{x}{4}\)
m) \(\dfrac{3x+2}{2}\) - \(\dfrac{3x+1}{6}\) = 2x + \(\dfrac{5}{3}\)
n) \(\dfrac{x+1}{7}\)+ \(\dfrac{x+2}{6}\) = \(\dfrac{x+3}{5}\) + \(\dfrac{x+4}{4}\)
o) \(\dfrac{x+5}{6}\) + \(\dfrac{x+6}{5}\) = x + 9
\(\begin{array}{l} n) \Leftrightarrow \dfrac{{x + 1}}{7} + 1 + \dfrac{{x + 2}}{6} + 1 = \dfrac{{x + 3}}{5} + 1 + \dfrac{{x + 4}}{4} + 1\\ \Leftrightarrow \dfrac{{x + 8}}{7} + \dfrac{{x + 8}}{6} - \dfrac{{x + 8}}{5} - \dfrac{{x + 8}}{4} = 0\\ \Leftrightarrow \left( {x + 8} \right)\underbrace {\left( {\dfrac{1}{7} + \dfrac{1}{8} - \dfrac{1}{5} - \dfrac{1}{6}} \right)}_{ < 0} = 0\\ \Leftrightarrow x + 8 = 0\\ \Leftrightarrow x = - 8 \end{array}\)
k/
\(8-\dfrac{x-2}{3}=\dfrac{x}{4}\)
\(\Leftrightarrow\dfrac{96}{12}-\dfrac{4\left(x-2\right)}{12}=\dfrac{3x}{12}\)
\(\Leftrightarrow96-4x+8=3x\)
\(\Leftrightarrow96-4x+8-3x=0\)
\(\Leftrightarrow104-7x=0\)
\(\Leftrightarrow7x=104\)
\(\Leftrightarrow x=104:7\)
\(\Leftrightarrow x=\dfrac{104}{7}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{104}{7}\right\}\)
m/
\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)
\(\Leftrightarrow9x+6-3x-1-12x-10=0\)
\(\Leftrightarrow-6x-5=0\)
\(\Leftrightarrow-6x=5\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{5}{6}\right\}\)
k) Ta có: \(8-\dfrac{x-2}{2}=\dfrac{x}{4}\)
\(\Leftrightarrow\dfrac{32}{4}-\dfrac{2\left(x-2\right)}{4}=\dfrac{x}{4}\)
\(\Leftrightarrow32-2x+4-x=0\)
\(\Leftrightarrow28-x=0\)
hay x=28
Vậy: S={28}
m) Ta có: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
\(\Leftrightarrow6x+5-12x-10=0\)
\(\Leftrightarrow-6x=5\)
hay \(x=-\dfrac{5}{6}\)
Vậy: \(S=\left\{-\dfrac{5}{6}\right\}\)
n) Ta có: \(\dfrac{x+1}{7}+\dfrac{x+2}{6}=\dfrac{x+3}{5}+\dfrac{x+4}{4}\)
\(\Leftrightarrow\dfrac{x+1}{7}+1+\dfrac{x+2}{6}+1=\dfrac{x+3}{5}+1+\dfrac{x+4}{4}+1\)
\(\Leftrightarrow\dfrac{x+8}{7}+\dfrac{x+8}{6}=\dfrac{x+8}{5}+\dfrac{x+8}{4}\)
\(\Leftrightarrow\dfrac{x+8}{7}+\dfrac{x+8}{6}-\dfrac{x+8}{5}-\dfrac{x+8}{4}=0\)
\(\Leftrightarrow\left(x+8\right)\left(\dfrac{1}{7}+\dfrac{1}{6}-\dfrac{1}{5}-\dfrac{1}{4}\right)=0\)
mà \(\dfrac{1}{7}+\dfrac{1}{6}-\dfrac{1}{5}-\dfrac{1}{4}\ne0\)
nên x+8=0
hay x=-8
Vậy: S={-8}
Tìm x:
a) \(\dfrac{-3}{7}\).x=\(\dfrac{3}{56}\).\(\dfrac{28}{9}\)
b) x-\(\dfrac{3}{16}\)=\(\dfrac{7}{15}\):\(\dfrac{3}{5}\)
c) \(\dfrac{2}{5}\)+\(\dfrac{1}{5}\).x=\(\dfrac{5}{6}\)
d) \(\dfrac{3}{4}\)x-\(\dfrac{2}{5}\)x=\(\dfrac{3}{7}\).\(\dfrac{1}{6}\)+\(\dfrac{5}{7}\).\(\dfrac{1}{6}\)
*Lưu ý: Trình bày chi tiết kết quả.
a)\(x=\left(\dfrac{3}{56}\cdot\dfrac{28}{9}\right):\dfrac{-3}{7}=\dfrac{1}{6}:\dfrac{-3}{7}=-\dfrac{7}{18}\)
b)\(x=\left(\dfrac{7}{15}\cdot\dfrac{5}{3}\right)+\dfrac{3}{16}=\dfrac{7}{9}+\dfrac{3}{16}=\dfrac{139}{144}\)
c)\(x=\left(\dfrac{5}{6}-\dfrac{2}{5}\right).5=\dfrac{13}{6}\)
d)\(=>x\left(\dfrac{3}{4}-\dfrac{2}{5}\right)=\dfrac{1}{6}\cdot\left(\dfrac{3}{7}+\dfrac{5}{7}\right)\)
\(x\cdot\dfrac{7}{20}=\dfrac{4}{21}=>x=\dfrac{4}{21}\cdot\dfrac{20}{7}=\dfrac{80}{147}\)