Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Kiều Anh
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 3 2021 lúc 14:39

1.

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+2}-\sqrt{2-x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{2x}{x\left(\sqrt{x+2}+\sqrt{2-x}\right)}=\lim\limits_{x\rightarrow0}\dfrac{2}{\sqrt{x+2}+\sqrt{2-x}}=\dfrac{2}{2\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

Vậy cần bổ sung \(f\left(0\right)=\dfrac{\sqrt{2}}{2}\) để hàm liên tục tại \(x=0\)

2.

a. \(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(x+\dfrac{3}{2}\right)=\dfrac{3}{2}\)

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt{x+1}-1}{\sqrt[3]{1+x}-1}=\lim\limits_{x\rightarrow0^+}\dfrac{x\left(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1\right)}{x\left(\sqrt[]{x+1}+1\right)}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1}{\sqrt[]{x+1}+1}=\dfrac{3}{2}\)

\(\Rightarrow f\left(0\right)=\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)\) nên hàm liên tục tại \(x=0\)

Nguyễn Việt Lâm
20 tháng 3 2021 lúc 14:42

2b.

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\dfrac{x^3-x^2+2x-2}{x-1}=\lim\limits_{x\rightarrow1^-}\dfrac{x^2\left(x-1\right)+2\left(x-1\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1^-}\dfrac{\left(x^2+2\right)\left(x-1\right)}{x-1}=\lim\limits_{x\rightarrow1^-}\left(x^2+2\right)=3\)

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=f\left(1\right)=\lim\limits_{x\rightarrow1^+}\left(3x+a\right)=a+3\)

- Nếu \(a=0\Rightarrow f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^+}f\left(x\right)\) hàm liên tục tại \(x=1\)

- Nếu \(a\ne0\Rightarrow\lim\limits_{x\rightarrow1^-}f\left(x\right)\ne\lim\limits_{x\rightarrow1^+}f\left(x\right)\Rightarrow\) hàm không liên tục tại \(x=1\)

Phạm Dương Ngọc Nhi
Xem chi tiết
...:v
14 tháng 2 2021 lúc 11:08

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x^2-1}+\sqrt[3]{\left(x-1\right)^3}}{\sqrt{x-1}}=\lim\limits_{x\rightarrow1^+}\dfrac{\left(x^2-1\right)^{\dfrac{1}{2}}+x-1}{\left(x-1\right)^{\dfrac{1}{2}}}=\lim\limits_{x\rightarrow1^+}\dfrac{\dfrac{1}{2}\left(x^2-1\right)^{-\dfrac{1}{2}}.2+1}{\dfrac{1}{2}\left(x-1\right)^{-\dfrac{1}{2}}}\)

\(=\dfrac{1}{0}=+\infty\)

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\dfrac{\sqrt[3]{x}-1}{\sqrt{2}-\sqrt{x+1}}=\lim\limits_{x\rightarrow1^-}\dfrac{\left(x-1\right)\left(\sqrt{2}+\sqrt{x+1}\right)}{[\left(\sqrt[3]{x}\right)^2+\sqrt[3]{x}+1]\left(1-x\right)}=\lim\limits_{x\rightarrow1^-}\dfrac{-\left(\sqrt{2}+\sqrt{1+1}\right)}{1+1+1}=-\dfrac{2\sqrt{2}}{3}\)

\(f\left(1\right)=\sqrt{2}\)

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)\ne\lim\limits_{x\rightarrow1^+}f\left(x\right)\ne f\left(x\right)\)=> ham gian doan tai x=1

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:18

• Xét hàm số \(f\left( x \right) = 2x - \sin x\) có tập xác định \(D = \mathbb{R}\).

Vậy hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).

• Xét hàm số \(g\left( x \right) = \sqrt {x - 1} \)

ĐKXĐ: \(x - 1 \ge 0 \Leftrightarrow x \ge 1\)

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) có tập xác định \(D = \left[ {1; + \infty } \right)\).

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) là hàm căn thức nên liên tục trên khoảng \(\left( {1; + \infty } \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1}  = \sqrt {1 - 1}  = 0 = g\left( 1 \right)\)

Do đó hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục tại điểm \({x_0} = 1\).

Vậy hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = f\left( x \right).g\left( x \right) = \left( {2x - \sin x} \right)\sqrt {x - 1} \)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = f\left( x \right).g\left( x \right)\) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{2x - \sin x}}{{\sqrt {x - 1} }}\)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục trên khoảng \(\left( {1; + \infty } \right)\).

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:17

a) TXĐ: \(D = \mathbb{R}\)

Hàm số \(y = \sqrt {{x^2} + 1} \) xác định trên \(\mathbb{R}\) nên liên tục trên \(\mathbb{R}\).

Hàm số \(y = 3 - x\) là đa thức nên liên tục trên \(\mathbb{R}\).

Vậy hàm số \(y = \sqrt {{x^2} + 1}  + 3 - x\) cũng liên tục trên \(\mathbb{R}\).

b) TXĐ: \(D = \mathbb{R}\backslash \left\{ 0 \right\}\)

Hàm số \(y = \frac{{{x^2} - 1}}{x}\) là hàm phân thức hữu tỉ nên liên tục trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).

Hàm số \(y = \cos x\) là hàm lượng giác nên liên tục trên \(\mathbb{R}\). Vậy hàm số \(y = \cos x\) cũng liên tục trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).

Vậy hàm số \(y = \frac{{{x^2} - 1}}{x}.\cos x\) liên tục trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:16

ĐKXĐ: \({x^2} - 4 \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge 2\\x \le  - 2\end{array} \right.\)

Vậy hàm số có TXĐ: \(D = \left( { - \infty ; - 2} \right] \cup \left[ {2; + \infty } \right)\).

Hàm số \(y = \sqrt {{x^2} - 4} \) là hàm số căn thức nên nó liên tục trên các nửa khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {2; + \infty } \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \sqrt {{x^2} - 4}  = \sqrt {{2^2} - 4}  = 0 = f\left( 2 \right)\)

\(\mathop {\lim }\limits_{x \to  - {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {2^ + }} \sqrt {{x^2} - 4}  = \sqrt {{{\left( { - 2} \right)}^2} - 4}  = 0 = f\left( { - 2} \right)\)

Vậy hàm số \(y = \sqrt {{x^2} - 4} \) liên tục trên các nửa khoảng \(\left( { - \infty ; - 2} \right]\) và \(\left[ {2; + \infty } \right)\).

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 11 2023 lúc 19:32

\(\lim\limits_{x\rightarrow2}f\left(x\right)=\lim\limits_{x\rightarrow2}\dfrac{2-\sqrt{2x^2-4}}{2-x}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{4-2x^2+4}{2+\sqrt{2x^2-4}}\cdot\dfrac{1}{2-x}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{-2\left(x^2-4\right)}{-\left(x-2\right)\left(2+\sqrt{2x^2-4}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(2+\sqrt{2x^2-4}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{2\left(x+2\right)}{2+\sqrt{2x^2-4}}=\dfrac{2\left(2+2\right)}{2+\sqrt{2\cdot2^2-4}}\)

\(=\dfrac{2\cdot4}{2+2}=\dfrac{8}{4}=2\)

\(f\left(2\right)=1\)

=>\(\lim\limits_{x\rightarrow2}f\left(x\right)< >f\left(2\right)\)

=>Hàm số bị gián đoạn tại x=2

Thầy Cao Đô
Xem chi tiết
HS133082290 Vũ Thị Thanh...
31 tháng 3 2022 lúc 20:48

F x tại 0 =0

Lim x tới 0 =1/2

Khách vãng lai đã xóa
Trần Hữu Sang
20 tháng 4 2022 lúc 15:26

loading...  

Trần Huỳnh Kim Ngân
20 tháng 4 2022 lúc 15:26

https://drive.google.com/file/d/1425SNt8hu4qt2y1kIcnhIvcxPfODsY1T/view?usp=sharing

https://drive.google.com/file/d/14Q-YI3szy-rePnIHWGD35RKCWiCXCT6k/view?usp=sharing

QSDFGHJK
Xem chi tiết
Akai Haruma
22 tháng 2 2021 lúc 19:07

Lời giải:

Ta có \(\lim\limits_ {x\to -1^+}f(x)=\lim\limits_ {x\to -1^+}\frac{x+\sqrt{x+2}}{x+1}=\lim\limits_ {x\to -1^+}\frac{x^2-x-2}{(x+1)(x-\sqrt{x+2})}\)

\(=\lim\limits_ {x\to -1^+}\frac{x-2}{x-\sqrt{x+2}}=\frac{3}{2}\)

\(\lim\limits_ {x\to -1^-} f(x)=\lim\limits_ {x\to -1^-}(2x+3)=1\)

\(\Rightarrow \lim\limits_ {x\to -1^-}f(x)\neq \lim\limits_ {x\to -1^+}f(x)\)

Do đó hàm số gián đoạn tại $x=-1$

Với $x\in (-\infty; -1)$ và $(-1;+\infty)$ thì $f(x)$ là phân thức luôn xác định nên $f(x)$ liên tục trên $(-\infty; -1)$ và $(-1;+\infty)$

 

 

Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:19

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{ax+1}-\sqrt[]{1-bx}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{ax}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\dfrac{bx}{1+\sqrt[]{1-bx}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{a}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\dfrac{b}{1+\sqrt[]{1-bx}}\right)=\dfrac{a}{3}+\dfrac{b}{2}\)

Hàm liên tục tại \(x=0\) khi:

\(\dfrac{a}{3}+\dfrac{b}{2}=3a-5b-1\Leftrightarrow8a-11b=3\)