Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức Long
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 11 2021 lúc 21:11

3: \(\Leftrightarrow a-15=0\)

hay a=15

Dương Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2022 lúc 14:45

c: \(\Leftrightarrow2x^3-6x^2+4x+x^2-3x+2+a-2⋮x^2-3x+2\)

=>a-2=0

=>a=2

d: \(\dfrac{5x^3+4x^2-6x-a}{5x-1}=\dfrac{5x^3-x^2+5x^2-x-5x+1-a-1}{5x-1}\)

\(=x^2+x-1+\dfrac{-a-1}{5x-1}\)

Để dư bằng -3 thì -a-1=-3

=>a+1=3

=>a=2

Phong Bùi Thiện
Xem chi tiết
Dathuc
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 11 2022 lúc 22:56

a: =>3x^3-x^2+3x^2-x-6x+2+m-2 chia hết cho 3x-1

=>m-2=0

=>m=2

b: =>\(x^4+3x^3-x^2+3x^3+9x^2-3x-x^2+3x-1-6x+a+1⋮x^2+3x-1\)

=>-6x+a+1=0

=>6x=a+1

=>x=(a+1)/6

Fuijsaka Ariko
Xem chi tiết
An Nguyễn Bá
29 tháng 10 2017 lúc 18:59

a) B = \(x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x=1\)

Ap dung dinh li Be du, ta có A chia hết cho B khi số dư = 0.

A = \(f\left(1\right)=1^4-3.1^3+6.1^2-7m+m=0\)

\(\Leftrightarrow m=\dfrac{2}{3}\)

Các câu còn lại đơn giản, áp dụng như câu a là được.

DƯƠNG PHAN KHÁNH DƯƠNG
29 tháng 10 2017 lúc 19:12

a ) Theo lược đồ hooc - ne

1 1 -3 6 -7+m 1 -2 4 -3+m

Để \(A\) chia hết cho B thì :

\(-3+m=0\Rightarrow m=3\)

Vậy \(m=3\)

An Nguyễn Bá
29 tháng 10 2017 lúc 19:34

B = \(x^2-2x+1=0\)

\(\Leftrightarrow x=1\)

Ap dung định lí Be du, ta có:

A = \(f\left(1\right)=-3+m=0\)

\(\Leftrightarrow m=3\)

Kẻ Vô Hình
Xem chi tiết
Akai Haruma
8 tháng 9 2019 lúc 11:24

Bài 1:

Ta có:

\(6x^4-7x^3+ax^2+3x+2\)

\(=6x^2(x^2-x+2)-x(x^2-x+2)+(a-13)(x^2-x+2)+(a-8)x+(28-2a)\)

\(=(x^2-x+2)(6x^2-x+a-13)+(a-8)x+(28-2a)\)

Từ đây ta dễ dàng thấy đa thức $6x^4-7x^3+ax^2+3x+2$ khi chia cho $x^2-x+2$ có dư là $(a-8)x+(28-2a)$

Để phép chia này là chia hết thì $(a-8)x+(28-2a)=0$, với mọi $x$

$\Rightarrow \left\{\begin{matrix}

a-8=0\\

28-2a=0\end{matrix}\right.$ (vô lý)

Vậy không tồn tại $a$ thỏa mãn đề.

Akai Haruma
8 tháng 9 2019 lúc 11:29

Bài 2:

Áp dụng định lý Bê-du về phép chia đa thức, ta thấy $f(x)$ chia hết cho $x+2$

$\Rightarrow f(-2)=0$

$\Leftrightarrow 32+4a-2b+c=0(1)$

Mặt khác, theo đề ta có:

$f(x)=2x^4+ax^2+bx+c=Q(x)(x^2-1)+x$ với $Q(x)$ là đa thức thương khi chia $f(x)$ cho $x^2-1$

Cho $x=1$:$\Rightarrow 2+a+b+c=1(2)$

Cho $x=-1\Rightarrow 2+a-b+c=-1(3)$

Từ $(1);(2);(3)\Rightarrow a=\frac{-28}{3}; b=1; c=\frac{22}{3}$

Trần Trà My
Xem chi tiết
Phùng Khánh Linh
23 tháng 10 2017 lúc 6:35

Ôn tập phép nhân và phép chia đa thứcÔn tập phép nhân và phép chia đa thứcÔn tập phép nhân và phép chia đa thức

Nijino Yume
Xem chi tiết
Aduvjp
Xem chi tiết
Akai Haruma
1 tháng 5 2023 lúc 21:36

Lời giải:

a.

$A+B=(5x^2-7x+2)+(4x^2+3x-1)=9x^2-4x+1$
$A-B=(5x^2-7x+2)-(4x^2+3x-1)=x^2-10x+3$

b. 

$A(x)=2x^2-x+m=x(2x-5)+4x+m=x(2x-5)+2(2x-5)+m+10$

$=B(x)(x+2)+m+10$

Để $A(x)\vdots B(x)$ thì $m+10=0\Leftrightarrow m=-10$