Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Duy Khương
Xem chi tiết
Teen Teen
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
21 tháng 5 2019 lúc 21:24

Có : \(a^3+a^2c-abc+b^2c+b^3\)

= \(\left(a^3+b^3\right)\left(a^2c-abc+b^2c\right)\)

= \(\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

= ( a+b+c) ( \(a^2-ab+b^2\)) mà a+b+c=0

=> \(a^3+a^2c-abc+b^2c+b^3=0\left(đpcm\right)\)

Cô bé mùa đông
Xem chi tiết
TM Vô Danh
23 tháng 7 2018 lúc 8:55

ta có \(a^3+b^3+a^2c+b^2c-abc=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)=\left(a^2-ab+b^2\right)\left(a+b+c\right)\)

mà a+b+c=0

\(\Rightarrow a^3+b^3+a^2c+b^2c-abc=\left(a^2-ab+b^2\right).0=0\left(đpcm\right)\)

Mai Diễm My
Xem chi tiết
Nguyễn Minh Thịnh
2 tháng 1 2019 lúc 20:24

Ta có: a+b+c =0 => c= -a -b

Ta có a3 +a2c -abc + b2c +b3

= (a3 +b3) +c(a2 -ab +b2)

= (a3 +b3) +(-a -b)(a2 -ab +b2)

= (a3 +b3) -(a +b)(a2 -ab +b2)

= (a3 +b3) -a3 -b3 = 0

Vậy a3 +a2c -abc +b2c +b3 =0

KO CÓ TÊN
Xem chi tiết
Ahwi
18 tháng 9 2019 lúc 20:42

\(a^3+a^2c-abc+b^2c+b^3.\)

\(=\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)\)

theo đề ta có \(a+b+c=0\)

\(\Rightarrow\left(a^2-ab+b^2\right)\left(a+b+c\right)\)

\(=\left(a^2-ab+b^2\right)\cdot0=0\)

\(\Rightarrow a^3+a^2c-abc+b^2c+b^3=0\left(đpcm\right)\)

Bài làm

Ta có: \(a^3+a^2c-abc+b^2c+b^3\)

\(=a^3+b^3+\left(a^2c-abc+b^2c\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a+b+c\right)\left(a^2-ab+b^2\right)\)

Thay \(a+b+c=0\)và biểu thức trên ta được:

\(=0.\left(a^2-ab+b^2\right)\)

\(=0\)( đpcm )

~ Bài này khó v~, mất nửa tiếng ms nghĩ ra. ~
# Học tốt #

rgrgvwevedgwgr
Xem chi tiết
Trần Quốc Lộc
17 tháng 2 2018 lúc 21:04

\(A=a^3+a^2c-abc+b^2c+b^3\\ =\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)\\ =\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a^2-ab+b^2\right)c\\ =\left(a+b+c\right)\left(a^2-ab+b^2\right)\\ Thay\text{ }a+b+c=0,\text{ }ta\text{ }được:\text{ }\\ A=\left(a+b+c\right)\left(a^2-ab+b^2\right)\\ =0\cdot\left(a^2-ab+b^2\right)\\ =0\)

Vậy \(A=0\) tại \(a+b+c=0\)

trần hiếu
Xem chi tiết
OoO Pipy OoO
8 tháng 8 2016 lúc 8:07

a + b + c = 0 => c = - a - b

Biến đổi VT:

\(a^3+a^2\left(-a-b\right)-ab\left(-a-b\right)+b^2\left(-a-b\right)+b^3\)

\(=a^3-a^3-a^2b+a^2b+ab^2-ab^2-b^3+b^3\)

\(=0\left(đpcm\right)\)

Lê Công Đạt
16 tháng 8 2018 lúc 9:23

Bạn có muốn biết nơi nào bạn sẽ vừa HỌC vừa KIẾM TIỀN được không?

BÀI TẬP KHÓ?
CÓ ALFAZI
Năm học mới rồi, các bạn bè các anh chị hỗ trợ bài tập, hướng dẫn học tập, cuối năm đạt kết quả tốt? ✅Bạn không có ai để làm điều đó
Truy cập: https://alfazi.edu.vn để trao đổi bài tập, chia sẻ tài liệu và tham gia hoạt động bổ ích cho học sinh, sinh viên nhé!
Đặc biệt, khi bạn tham gia giải đáp bài tập, bạn sẽ nhận được “phụ cấp” siêu khủng từ Web!
Một web học tập rất thân thiện, môi trường học tập cực tốt, Các bạn đừng bỏ phí cơ hội này nhé!
Web rất hân hạnh được đón tiếp những tài năng tương lai của đất nước!
❤️❤️😘😘😘Love you💋💋

TRUY CẬP HTTPS://ALFAZI.EDU.VN ĐỂ NHẬN 20.000 SAU KHI ĐĂNG KÍ!

Lê Tài Bảo Châu
5 tháng 9 2019 lúc 9:16

Cách 2:

\(a^3+a^2c-abc+b^2c+b^3\)

\(=\left(a^3+b^3\right)+\left(a^2c-abc+b^2c\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)\)

\(=\left(a^2-ab+b^2\right).0\)( vì a+b+c=0 )

\(=0\)

Khanh Hoa
Xem chi tiết
 Mashiro Shiina
18 tháng 9 2018 lúc 18:00

\(a^3+a^2c-abc+b^2c+b^3=0\)

\(\Rightarrow a^2\left(a+c\right)-abc+b^2\left(b+c\right)=0\)

\(\Rightarrow-a^2b-abc-b^2a=0\)

\(\Rightarrow a^2b+abc+b^2a=0\)

\(\Rightarrow ab\left(a+b+c\right)=0\)(đúng)

Hoàng Linh Chi
Xem chi tiết
Luân Đào
20 tháng 6 2019 lúc 13:18

\(a+b+c=0\Rightarrow c=-a-b=-\left(a+b\right)\)

\(\Rightarrow F=a^3+b^3-a^2\left(a+b\right)-b^2\left(a+b\right)+ab\left(a+b\right)\)

\(=a^3+b^3-a^3-a^2b-b^2a-b^3+a^2b+ab^2=0\)