\(a+b+c=0\Rightarrow c=-a-b=-\left(a+b\right)\)
\(\Rightarrow F=a^3+b^3-a^2\left(a+b\right)-b^2\left(a+b\right)+ab\left(a+b\right)\)
\(=a^3+b^3-a^3-a^2b-b^2a-b^3+a^2b+ab^2=0\)
\(a+b+c=0\Rightarrow c=-a-b=-\left(a+b\right)\)
\(\Rightarrow F=a^3+b^3-a^2\left(a+b\right)-b^2\left(a+b\right)+ab\left(a+b\right)\)
\(=a^3+b^3-a^3-a^2b-b^2a-b^3+a^2b+ab^2=0\)
Cho a, b, c > 0, abc = 8
Tìm \(MaxP=\dfrac{1}{2a+b+c}+\dfrac{1}{2b+c+6}+\dfrac{1}{2c+a+6}\)
Cho a,b,c >0 thoar manx ab + bc + ca =5abc
CMR: \(P=\frac{1}{2a+2b+2c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\le1\)
Cho a, b, c > 0 thỏa mãn : \(\dfrac{3}{b}+\dfrac{4}{a}+\dfrac{4}{c}=3\)
Tìm GTNN của : \(A=\dfrac{2\left(a+b\right)^2}{2a+3b}+\dfrac{\left(b+2c\right)^2}{2b+c}+\dfrac{\left(2c+a\right)^2}{c+2a}\)
(Hình như là đề QN 15-16 :v)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=0. Tìm GTNN của biểu thức \(\dfrac{a^3}{b\left(2c+a\right)}+\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c^3}{a\left(2b+c\right)}\)
Tìm max \(S=\sqrt[3]{a\left(b+2c\right)}+\sqrt[3]{b\left(c+2a\right)}+\sqrt[3]{c\left(a+2b\right)}\)với a, b, c > 0 và a+ b +c =3.
cho a,b,c,d>0 và \(a^2+b^2+c^2+d^2=1\)
CMR : \(a^2b^2cd+ab^2c^2d+a^2bcd^2+a^2bc^2d+ab^2cd^2+abc^2d^2\) \< \(\dfrac{3}{32}\)
Cho a, b, c khác 0 và \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Tính \(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
cho a,b,c >0 .chứng minh
\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}+\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}+\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\le8\)
cho 3 so thuc duong a, b, c thoa man 1/a+1/c=2/b. tim GTNN cua (a+b)/(2a-b)+(b+c)(/2c-b)