ta có \(a^3+b^3+a^2c+b^2c-abc=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)=\left(a^2-ab+b^2\right)\left(a+b+c\right)\)
mà a+b+c=0
\(\Rightarrow a^3+b^3+a^2c+b^2c-abc=\left(a^2-ab+b^2\right).0=0\left(đpcm\right)\)
ta có \(a^3+b^3+a^2c+b^2c-abc=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)=\left(a^2-ab+b^2\right)\left(a+b+c\right)\)
mà a+b+c=0
\(\Rightarrow a^3+b^3+a^2c+b^2c-abc=\left(a^2-ab+b^2\right).0=0\left(đpcm\right)\)
Cho a,b,c khác 0 thỏa mãn: a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2
tính A=(1+a/b)(1+b/c)(1+c/a)
bài 1:
cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-a2a)^2+(c+a-2b)^2
Chứng minh rằng a=b=c
bài2
Cho a^2+b^2+c^2=m. Tính giá trị của biểu thức sau theo m
A=(2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2
Cho 3 số a,b,c thỏa mãn a+b+c=0
Chứng minh rằng : a3+a2c-abc+b2c+b3=0
(a-b)^2 +(b-c)^2 + (c-a)^2 = (a+b-2c)^2 + (b+c-2a)^2 . Chứng minh rằng a=b=c
phân tích đa thức thành nhân tử
1.\(\left(a^2+b^2+ab\right)^2-a^2b^2-b^2c^2-c^2a^2\)
2.\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)
3.\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
4.\(a^6-a^4+2a^3+2a^2\)
5.\(\left(a+b\right)^3-\left(a-b\right)^3\)
6.\(x^3-3x^2+3x-1-y^3\)
7.\(x^{m+4}+x^{m+3}-x-1\)
Phân tích đa thức thành nhân tử:
a) A = (a - b)3 + (b - c)3 + (c - a)3.
b) B = (a + b - 2c)3 + (b + c - 2a)3 + (c + a - 2b)3.
Câu 1: a) Cho x + y = 1 và xy = -1 chứng minh rằng: x3 + y4 = 4
b) Cho x -y = 1 và xy = 6 chứng minh rằng: x3 -y3 = 19
c) Cho x + y = 3 và x2 + y2 = 5. Tính x2 + y2
Câu 2: a) Cho a + b + c = 0 chứng minh rằng: (a2 + b2 + c2)2 = 2 (a4 + b4 + c4)
b) Chứng minh rằng: a2 + b2 + c2 = ab + bc + ac thì a = b = c
HELLP ME T^T
cho a>b>0,c>d>0 chứng minh răng ac>bd
Chứng minh rằng nếu:
(a + b + c + d) (a - b - c + d) = (a - b + c - d) (a + b - c - d)
thì\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
(a, b, c, d khác 0)