15 . ( x- 3 ) + 3 (x+ 26 ) = 19 . ( x + 1)
\(\left(\dfrac{1}{\sqrt{x}}-\sqrt{x}\right):\left(\dfrac{1-\sqrt[]{x}}{x+\sqrt{x}}\right)\)
\(\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}-3}\)
\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
RÚT GON
\(\left(\dfrac{1}{\sqrt{x}}-\sqrt{x}\right):\left(\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\) (ĐK: \(x>0\))
\(=\left(\dfrac{1}{\sqrt{x}}-\dfrac{x}{\sqrt{x}}\right)\cdot\dfrac{-\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{-\sqrt{x}}\cdot\dfrac{-\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{-\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\left(\sqrt{x}+1\right)^2\)
c:
b;
Sửa đề: \(\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)\(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2\sqrt{x}\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)
1. tìm x bt
a, -19 - x = -20
b, 5 x - 6 = 3 x + 12
c, 15 - 3 (x + 1 ) = 8 - 2 x
d, ( 5 x - 6)^2 = 16
f, 26 - | x + 9 | = 13
e, | 3 + x | = 19
giải ra giúp mk nhé mk đang cần gấp cảm ơn .
a, -19 - x = -20
x = -19 - (-20)
x = -19 + 20
x = 1
b, 5x - 6 = 3x + 12
5x - 6 - 3x = 12
5x - 3x = 12 + 6
(5 - 3)x = 18
2x = 18
x = 18 : 2
x = 9
c, 15 - 3 (x - 1) = 8 - 2x
15 - 3 (x - 1) + 2x = 8
-3x - 3 - 2x = 8 - 15
-3x - 3 - 2x = -7
-3x - 2x - 3 = 7
-3x - 2x = 7 + 3
(-3 - 2) x = 10
-5x = 10
x = 10 : (-5)
x = -2
d, (5x - 6)2 = 16
(5x - 6)2 = 42
=> 5x - 6 = 4
5x = 4 + 6
5x = 10
x = 10 : 5
x = 2
f, 26 - | x + 9 | = 13
| x + 9 | = 26 - 13
=> | x + 9 | = 13
=> x + 9 = +- 13
* Với x + 9 = 13
x = 13 - 9
x = 4
* Với x + 9 = -13
x = -13 - 9
x = -22
Vậy x = {4;-22}
e, | 3 + x | = 19
=> 3 + x = +- 19
* Với 3 + x = 19
x = 19 - 3
x = 16
* Với 3 + x = -19
x = -19 - 3
x = -22
Vậy x = {16;-22}
a, X = -19+20=1
b, (5-3)X = 18
2X = 18
=> X = 9
c, 3X + 3 -2X = 7
X+3 =7
X = 4
f, |X+9| = 13
ta có 2 trường hợp:
TH1: X+9 = 13
=> X= 4
TH2 : X+9 = -13
=> X= -22
e, ta có 2 trường hợp:
TH1: 3+X = 19
=> X= 16
TH2: 3+X = -19
=> X= -22
1.Tìm các số nguyên x:
5/17+-4/9+-20/31+12/17+-11/31<x<=-3/7+7/15+4/-7+8/15+2/3
2. Tính
A=5-10/19+15/143-5/81+8-16/26+24/243-8/181
6-12/19+18/143-6/81+9-18/26+27/243-9/181
Tính giá trị của biểu thức sau bằng cách hợp lí:
7+7^10 x 2^20 x 3^6 - 2^19 x 6^15 / 9 x 6^19 x 2^9 - 4 x 3^17 x 2^26
a. 125 : (3x – 13) = 25 b. 541 + (218 – x) = 735
c. 3(2x + 1) – 19 = 14 d. 175 – 5(x + 3) = 85
e. 4x – 40 = |-4| + 12 g. x + 15 = 20 – 4x
h. -16 + 23 + x = - 16 i. 2x – 35 = 15
k. │x - 1│= 0 p. -13 .│x│ = -26
\(\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x+3}}\)
Yêu cầu đề bài là gì bạn nên ghi đầy đủ để được hỗ trợ tốt hơn.
120 - ( 74 - ( 15 - 123 ) )
43 x 29 - 43 x 26
73 x 124 + 76 x 27
18 x 181 + 18 x 19 - 138
a,-x + 8 = -17
b, 35 - x = 37
c, -19 -x = -20
d, x - 45 = -17
e, | x+ 3| = 15
g, |x-7| +13 = 25
f, |x-3| -16 = -4
k, 26 -| x+9| = -13
a) -x + 8 = -17
⇔ -x = -17 - 8
⇔ -x = -25
⇔ x = 25
b) 35 - x = 37
⇔ x = 35 - 37
⇔ x = -2
c) -19 - x = -20
⇔ x = -19 + 20
⇔ x = 1
d) x - 45 = -17
⇔ x = -17 + 45
⇔ x = 28
e) |x + 3| = 15
⇔ \(\left[{}\begin{matrix}x+3=15\\x+3=-15\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=15-3\\x=-15-3\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=12\\x=-18\end{matrix}\right.\)
f) |x - 3| - 16 = -4
⇔ |x - 3| = -4 + 16
⇔ |x - 3| = 12
⇔ \(\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=12+3\\x=-12+3\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)
k) 26 - |x + 9| = -13
⇔ |x + 9| = 26 + 13
⇔ |x + 9| = 39
⇔ \(\left[{}\begin{matrix}x+9=39\\x+9=-39\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=39-9\\x=-39-9\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=30\\x=-48\end{matrix}\right.\)
a,-x + 8 = -17
=> -x=-17-8
=> -x=-25
=> x=25
vậy x=25
b, 35 - x = 37
=> x=35-37
=> x=-2
vậy x=-2
c, -19 -x = -20
=> x=-19+20
=> x=1
vậy x=1
d, x - 45 = -17
=> x=-17+45
=> x=28
vậy x=28
e, | x+ 3| = 15
th1 x+3=15
=> x=15-3
=> x=12
th2 x+3=-15
=> x=-15-3
=> x=-18
vậy x=12 hoặc x=-18
g, |x-7| +13 = 25
=> \(\left|x-7\right|=25-13\)
=> \(\left|x-7\right|=12\)
th1 x-7=12
=> x=12+7
=> x=19
th2 x-7=-12
=>x=-12+7
=> x=-5
vậy x=19 hoặc x=-5
các câu sau tt
g) |x - 7| + 13 = 25
⇔ |x - 7| = 25 - 13
⇔ |x - 7| = 12
⇔ \(\left[{}\begin{matrix}x-7=12\\x-7=-12\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=12+7\\x=-12+7\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=19\\x=-5\end{matrix}\right.\)
RG: A = \(\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}\) - \(\dfrac{2\sqrt{x}}{\sqrt{x}-1}\) + \(\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\) ; ĐKXĐ: x ≥ 0
\(A=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(A=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(A=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(A=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-3\sqrt{x}-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{\left(x\sqrt{x}-x\right)+\left(16\sqrt{x}-16\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{x\left(\sqrt{x}-1\right)+16\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{\left(\sqrt{x}-1\right)\left(x+16\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{x+16}{\sqrt{x}+3}\)