giải pt \(cos2\left(x+\frac{\pi}{6}\right)+4cos\left(\frac{\pi}{3}-x\right)=\frac{5}{2}\)
giải pt \(cos2\left(x+\frac{\pi}{6}\right)+4cos\left(\frac{\pi}{5}-x\right)=\frac{5}{2}\)
uk đúng rồi ...mk viết nhầm ..phải là cos^2 nha
giải pt \(cos^2\left(x+\frac{\pi}{6}\right)+4cos\left(\frac{\pi}{5}-x\right)=\frac{5}{2}\)
Cho phương trình : \(cos2\left(x+\frac{\pi}{3}\right)+4cos\left(\frac{\pi}{6}-x\right)=\frac{5}{2}\) . Khi đặt \(t=cos\left(\frac{\pi}{6}-x\right)\) , phương trình đã cho trờ thành ?
\(cos2\left(x+\frac{\pi}{3}\right)=2cos^2\left(x+\frac{\pi}{3}\right)-1=2cos^2\left[\frac{\pi}{2}-\left(\frac{\pi}{6}-x\right)\right]-1\)
\(=2sin^2\left(\frac{\pi}{6}-x\right)-1=2\left(1-cos^2\left(\frac{\pi}{6}-x\right)\right)-1=1-2cos^2\left(\frac{\pi}{6}-x\right)=1-2t^2\)
Vậy pt trở thành: \(1-2t^2+4t=\frac{5}{2}\Leftrightarrow2t^2-4t+\frac{3}{2}=0\)
giải pt
\(cos^2\left(\frac{\pi}{3}+x\right)+4cos\left(\frac{\pi}{6}-x\right)=4\)
\(cos^2\left(\frac{\pi}{3}+x\right)+4sin\left(x+\frac{\pi}{3}\right)-4=0\)
\(\Leftrightarrow1-sin^2\left(x+\frac{\pi}{3}\right)+4sin\left(x+\frac{\pi}{3}\right)-4=0\)
\(\Leftrightarrow sin^2\left(x+\frac{\pi}{3}\right)-4sin\left(x+\frac{\pi}{3}\right)+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)=1\\sin\left(x+\frac{\pi}{3}\right)=3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x+\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow...\)
Phương trình : \(cos2\left(x+\frac{\Pi}{3}\right)+4cos\left(\frac{\Pi}{6}-x\right)=\frac{5}{2}\) có nghiệm là :
A . \(\left[{}\begin{matrix}x=-\frac{\Pi}{6}+k2\Pi\\x=\frac{\Pi}{2}+k2\Pi\end{matrix}\right.\)
B . \(\left[{}\begin{matrix}x=\frac{\Pi}{6}+k2\Pi\\x=\frac{3\Pi}{2}+k2\Pi\end{matrix}\right.\)
C. \(\left[{}\begin{matrix}x=-\frac{\Pi}{3}+k2\Pi\\x=\frac{5\Pi}{6}+k2\Pi\end{matrix}\right.\)
D . \(\left[{}\begin{matrix}x=\frac{\Pi}{3}+k2\Pi\\x=\frac{\Pi}{4}+k2\Pi\end{matrix}\right.\)
Trình bày bài giải chi tiết rồi ms chọn đáp án nha các bạn .
giải các pt
a) \(cos^2\left(\frac{\pi}{3}+x\right)+4cos\left(\frac{\pi}{6}-x\right)=4\)
b) \(5cos\left(2x+\frac{\pi}{3}\right)=4sin\left(\frac{5\pi}{6}-x\right)-9\)
c) \(2sin^2x+\sqrt{3}sin2x+2\sqrt{3}sinx+2cosx=2\)
d) \(2sin^2x+\sqrt{3}sin2x+4=4\left(\sqrt{3}sinx+cosx\right)\)
a/
Đặt \(x+\frac{\pi}{3}=a\Rightarrow x=a-\frac{\pi}{3}\)
Pt trở thành:
\(cos^2a+4cos\left(\frac{\pi}{6}-a+\frac{\pi}{3}\right)=4\)
\(\Leftrightarrow cos^2a+4cos\left(\frac{\pi}{2}-a\right)-4=0\)
\(\Leftrightarrow cos^2a+4sina-4=0\)
\(\Leftrightarrow1-sin^2a+4sina-4=0\)
\(\Leftrightarrow-sin^2a+4sina-3=0\)
\(\Rightarrow\left[{}\begin{matrix}sina=1\\sina=3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow sin\left(x+\frac{\pi}{3}\right)=1\)
\(\Rightarrow x+\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=\frac{\pi}{6}+k2\pi\)
b/
Đặt \(x+\frac{\pi}{6}=a\Rightarrow x=a-\frac{\pi}{6}\)
Pt trở thành:
\(5cos2a=4sin\left(\frac{5\pi}{6}-a+\frac{\pi}{6}\right)-9\)
\(\Leftrightarrow5cos2x=4sin\left(\pi-a\right)-9\)
\(\Leftrightarrow5\left(1-2sin^2a\right)=4sina-9\)
\(\Leftrightarrow10sin^2a+4sina-14=0\)
\(\Rightarrow\left[{}\begin{matrix}sina=1\\sina=-\frac{7}{5}< -1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow sin\left(x+\frac{\pi}{6}\right)=1\)
\(\Rightarrow x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=\frac{\pi}{3}+k2\pi\)
c/
\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+2\sqrt{3}sinx+2cosx=2\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+2\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=\frac{1}{2}\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)=\frac{1}{2}\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)
\(\Leftrightarrow cos2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)
\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)
\(\Leftrightarrow-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)+\frac{1}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{1+\sqrt{2}}{2}\left(l\right)\\sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\\x+\frac{\pi}{6}=\pi-arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=...\)
Giải các pt lượng giác sau
1) \(cos^2\left(x-\frac{\pi}{6}\right)-sin^2\left(x-\frac{\pi}{6}\right)=sin\left(x+\frac{\pi}{3}\right)\)
2) \(sin^4-sin^4\left(x+\frac{\pi}{2}\right)=sin\left(x+\frac{\pi}{3}\right)\)
3) \(8cos^3\left(x-\frac{\pi}{3}\right)-1=0\)
\(\text{1) }cos^2\left(x-\frac{\pi}{6}\right)-sin^2\left(x-\frac{\pi}{6}\right)=sin\left(x+\frac{\pi}{3}\right)\\ \Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=cos\left(\frac{\pi}{6}-x\right)\\ \Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+m2\pi\\2x-\frac{\pi}{3}=x-\frac{\pi}{6}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{m2\pi}{3}\\x=\frac{\pi}{6}+n2\pi\end{matrix}\right.\\\Leftrightarrow x=\frac{\pi}{6}+\frac{k2\pi}{3} \)
\(2\text{) }sin^4x-sin^4\left(x+\frac{\pi}{2}\right)=sin\left(x+\frac{\pi}{3}\right)\\ \Leftrightarrow sin^4x-cos^4x=sin\left(x+\frac{\pi}{3}\right)\\ \Leftrightarrow sin^2x-cos^2x=sin\left(x+\frac{\pi}{3}\right)\\ \Leftrightarrow cos\left(\pi-2x\right)=cos\left(\frac{\pi}{6}-x\right)\\ \Leftrightarrow\left[{}\begin{matrix}\pi-2x=\frac{\pi}{6}-x+m2\pi\\\pi-2x=x-\frac{\pi}{6}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{6}-m2\pi\\x=\frac{7\pi}{18}-\frac{n2\pi}{3}\end{matrix}\right.\)
\(3\text{) }pt\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}=cos\frac{\pi}{3}\\ \Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{3}+m2\pi\\x-\frac{\pi}{3}=-\frac{\pi}{3}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+m2\pi\\x=n2\pi\end{matrix}\right.\)
a/
\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{6}-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+k2\pi\\2x-\frac{\pi}{3}=x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{6}+\frac{k2\pi}{3}\)
b/
\(\Rightarrow sin^4x-cos^4x=sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow-cos2x=sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow cos2x=-sin\left(x+\frac{\pi}{3}\right)=cos\left(x+\frac{5\pi}{6}\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x=x+\frac{5\pi}{6}+k2\pi\\2x=-x-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{5\pi}{6}+k2\pi\\x=-\frac{5\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
c/
\(\Leftrightarrow cos^3\left(x-\frac{\pi}{3}\right)=\frac{1}{8}\)
\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=cos\left(\frac{\pi}{3}\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{3}+k2\pi\\x-\frac{\pi}{3}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=k2\pi\end{matrix}\right.\)
giải pt
\(sin^2\left(2x+\frac{\pi}{6}\right)-6sin\left(x+\frac{\pi}{6}\right).cos\left(x+\frac{\pi}{6}\right)+2=0\)
Cho \(-\frac{\pi}{4}< \alpha< \frac{\pi}{6}\). Xác định dấu của biểu thức
\(A=\frac{cos2\alpha.sin\left(2\alpha+\frac{\pi}{2}\right)}{tan\left(\alpha+\frac{\pi}{3}\right)}\)