Cho ΔABC cân tại A.M là tđ BC
a) ABM=ACM
b)Từ M kẻ đt vuông với AB và AC lần lượt là H và K.CM:HB=CK
c)Từ B kẻ đt vuông vs AC tại P. CM:IBM cân tại I
cho tam giác ABC cân tại A .Gọi M là trung điểm của bc .Kẻ đường cao BP .từ M ,kẻ các đường thẳng MK và MH lần lượt vuông góc với AC và AB tại K và H
a, chứng minh tam giác ABM = tam giác ACM
b, chứng minh BH =CK
Bạn tự vẽ hình nhé hình này rất dễ thôi :v
a)Xét tam giác cân ABC có:AM là trung tuyến
`=>` AM là đường cao
`=>AM bot BC`
Xét tam giác ABM và tam giác ACM có:
`AM` chung
`hat{AMB}=hat{AMC}=90^o(CMT)`
`BM=MC`(do m là trung điểm)
`=>Delta ABM=Delta ACM(cgc)`
`b)` Xét tam giác vuông BHM và tam giác vuông CKM ta có:
`BM=CM`(M là trung điểm)
`hat{ABC}=hat{ACB}`(do tam giác ABC cân)
`=>Delta BHM=Delta CKM`(ch-gn)
`=>BH=CK`
Cho tam giác ABC cân tại A, từ A kẻ AH vuông góc với BC tại H. từ H kẻ đường thẳng vuông góc với AB,AC lần lượt tại D và E
1,CM tia AH là phân giác của góc BAC
2, CM HD = HE
3,CM tam giác ADE là tam giác cân
4,Tia ED,HD cắt đường thẳng AB ,AC lần lượt tại M,N .gọi I là TĐ của đoạn MN.CM 3 diểm I,H,A thẳng hàng
cho tam giác Abc cân tại A, M là trung điểm của BC
a) C/m tam giác ABM= tam giác ACM
b) Từ M kẻ MH vuông góc AB và MK vuông góc AC. C/m BH=CK
a, Xét Δ ABM và Δ ACM, có :
AB = AC (Δ ABC cân tại A)
MB = MC (M là trung điểm BC)
\(\widehat{ABM}=\widehat{ACM}\) (Δ ABC cân tại A)
=> Δ ABM = Δ ACM (c.g.c)
b, Xét Δ MHB và Δ MKC, có :
\(\widehat{MHB}=\widehat{MKC}=90^o\)
\(\widehat{HBM}=\widehat{KCM}\) (cmt)
\(\widehat{HMB}=\widehat{KMC}\) (đối đỉnh)
=> Δ MHB = Δ MKC (g.g.g)
=> BH = CK
a. Xét tam giác ABM và tam giác ACM có :
AB = AC ( vì tam giác ABC cân tại A )
AM chung
BM = MC ( vì M là trung điểm của BC)
=> tam giác ABM= tam giác ACM ( c-c-c)
b. Xét tam giác BHM và tam giác CKM ta có :
BM = MC (gt)
Góc BHM = góc CKM ( = 90 độ )
Góc B = Góc C ( vì tam giác ABC cân tại A)
=> tam giác BHM = tam giác CKM ( ch-gn)
=> BH = CK ( hai cạnh tương ứng)
a
xét ΔABM và ΔACM , ta có
MB=MC ( M là trung điểm của BC )
góc A= góc B( tam giác Abc cân tại A)
AB=AC(tam giác Abc cân tại A)
vậy ΔABM = ΔACM (c.g.c)
b
xét ΔMBH VÀ ΔMBH có
góc MHB= góc MKC(gt)
MB=MC(cmt)
góc A= góc B( cmt)
vậy ΔMBH VÀ ΔMBH (ch-gn)
⇒BH=CK (hai cạnh tương ứng)
Cho tam giác ABC cân tại A. Qua B kẻ đt vuông góc AB. Qua C kẻ đt vuông góc AC. Chúngcắt nhau tại D. C/M AD là tia p/g góc A?
cho tam giác ABC vuông cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Kẻ NH vuông góc với CM tại H . Kẻ HE vuông góc với AB tại E. Từ A kẻ AK vuông góc với CM tại K và AQ vuống góc với HN tại Q
a) tính góc BKA
b) Chứng minh rằng tam giac ABH cân và HM là phân giác của góc BHE
Cho tam giác ABC cân tai A. Lấy D thuộc cạnh BC, trên tia đối tia CB lấy E sao cho CE BD. Đt vuông góc BC kẻ từ D cát AB tại M. Dt vuông góc BE kẻ từ E catswAC tại N. C/m:
a) tam giác MDN = tam giác NEC
b) Gọi I là giao điểm MN và BC. C/mI là trung điểm của MN
c) Kẻ AH vuông góc BC tại H. Kẻ đt qua I vuông gocsMN tại I cắt AH tại O.C/m:góc OBA= góc OCA
d) C/m tam giác OMN cân
e) C/m góc OBM = góc OCN
f) Đt vuông góc MN tại I luôn đi qua 1 điểm cố định khi D di chuyển trên BC
Cho tam giác ABC cân tại A lấy điểm M là trung điểm của BC
a) Chứng minh tam giác ABM=tam giác ACM
b) Biết AB=10cm ; BC= 12 cm. Tính AM
c) qua M kẻ MK vuông góc AB ( k thuộc AB ) , Kẻ MH vuông góc AB (H thuộc AC) . Chứng minh MH = MK
d) Chứng minh AM vuông góc với KH
( Mng ơi , giúp mình câu d bài này với ạ , cảm ơn mng nhìu ạ )
mình chỉ giúp ý d theo mong muốn của bạn thôi :)
Có : AH = AK ( cái này bạn chứng minh ở câu trên chưa mình không biết; nếu chưa thì bạn chứng minh đi nhé )
=> A thuộc đường trung trực của HK
và MH=MK
=> M thuộc đường trung trực của HK
=> AM là đường trung tực của HK
=> AM ⊥ HK
Cho tam giác ABC cân tại A.Gọi M là trung điểm của cạnh BC
a,chứng minh tam giác ABM=tam giác ACM
b,từ M vẽ MH vuông góc AB và MK vuông góc AC .chứng minh MK = MH
c, gọi I là giao điểm của HM và AC, J là giao điểm của KM và AB. chứng minh tam giác ẠI cân và IJ//BC
VẼ HÌNH VÀ CHỨNG MINH
a, Tam giác \(ABC\) cân tại \(A\)
\(\Rightarrow AB=AC;\widehat{B}=\widehat{C}\)
Xét \(\Delta ABM;\Delta ACM\) có
\(AB=AC\left(cmt\right)\\ \widehat{B}=\widehat{C}\left(cmt\right)\\ MB=MC\)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)
b, \(\Delta ABM=\Delta ACM\left(cmt\right)\)
\(\Rightarrow\widehat{HAM}=\widehat{KAM}\)
Xét \(\Delta AHM;\Delta AKM\) có
\(\widehat{HAM}=\widehat{KAM}\left(cmt\right)\\ \widehat{AHM}=\widehat{AKM}=90^o\)
\(AM\) chung
\(\Rightarrow\Delta AHM=\Delta AKM\left(ch-gn\right)\)
\(\Rightarrow HM=KM\)
21. Cho ΔABC vuông cân tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D bất kì. Từ D kẻ các đường thẳng vuông góc với AB,AC lần lượt tại E,F
a, Cm AEDF là hình vuông
b, Cm EF//BC
c, Qua E kẻ đường thẳng vuông góc vs MF tại N. Cm góc AND = 90o
a: ΔABC vuông cân tại A
mà AM là trung tuyến
nên AM là phân giác của góc BAC
Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
AD là phân giác của góc FAE
=>AEDF là hình vuông
b: AEDF là hình vuông
=>góc AEF=45 độ
=>góc AEF=góc ABC
=>EF//BC