Phân tích thành nhân tử:
a) a - 5√a
b) a - 7 với a > 0
c) a + 4√a + 4
d) √xy - 4√x + 3√y - 12
b4: phân tích thành nhân tử :
a, \(a-5\sqrt{a}\) với a > 0
b, \(a-7\) với a > 0
c, \(a+4\sqrt{a}+4\)
d, \(\sqrt{xy}-4\sqrt{x}+3\sqrt{y}-12\)
a)\(a-5\sqrt{a}=\sqrt{a}\left(\sqrt{a}-5\right)\)
b)\(a-7=\left(\sqrt{a}-\sqrt{7}\right)\left(\sqrt{a}+\sqrt{7}\right)\)
c)\(a+4\sqrt{a}+4=\left(\sqrt{a}+2\right)^2\)
d)\(\sqrt{xy}-4\sqrt{x}+3\sqrt{y}-12=\sqrt{x}\left(\sqrt{y}-4\right)+3\left(\sqrt{y}-4\right)=\left(\sqrt{x}+3\right)\left(\sqrt{y}-4\right)\)
Dạng 1: Phân tích đa thức sau thành nhân tử:
a) 2x-4 b) x^2+x
c)2a^2-4ab
d) x(y+1)-y(y+1)
e) a(a+xy)^2-(x+y)
f) 5(x-7)-a(7-x)
Giúp mình nhé, mình đang cần gấp lắm ;-;
Phân tích đa thức thành nhân tử:
a) 2x-72x3
b) m3p+m2np-m2p2-mnp2
c) a(x2+4)-x(a2+4)
d) (xy+ab)2+(ay-bx)2
e) x2y-xy2+x3-y3
f) 4x4+1
(Mình cần gấp ạ :3)
a) \(2x-72x^3=2x\left(1-36x^2\right)=2x\left(1-6x\right)\left(1+6x\right)\)
f) \(4x^4+1=4x^4+4x^2+1-4x^2=\left(2x^2+1\right)^2-\left(2x\right)^2=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
Phân tích đa thức thành nhân tử:
a) 2x-72x3
b) m3p+m2np-m2p2-mnp2
c) a(x2+4)-x(a2+4)
d) (xy+ab)2+(ay-bx)2
e) x2y-xy2+x3-y3
f) 4x4+1
Bài 7: Phân tích đa thức thành nhân tử:
a, 4x2 - 1
b, x2 -3y2
c, 9x2 -1/4
d, (x-y)2 -4
e, 9 - (x-y)2
f, (x2 + 4)2 - 16x2
a) \(4x^2-1\)
\(=\left(2x\right)^2-1^2\)
\(=\left(2x-1\right)\left(2x+1\right)\)
b) \(x^2-3y^2\)
\(=x^2-\left(y\sqrt{3}\right)^2\)
\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
c) \(9x^2-\dfrac{1}{4}\)
\(=\left(3x\right)^2-\left(\dfrac{1}{2}\right)^2\)
\(=\left(3x-\dfrac{1}{2}\right)\left(3x+\dfrac{1}{2}\right)\)
d) \(\left(x-y\right)^2-4\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
e) \(9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3+x-y\right)\left(3-x+y\right)\)
f) \(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\left(x+2\right)^2\)
Phân tích đa thức thành nhân tử:
a) (a2 + b2- 5)2- 4(ab + 2)2
b) bc(b + c) + ca(c - a) - ab(a + b);
a: Ta có: \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)
\(=\left[\left(a-b\right)^2-9\right]\cdot\left[\left(a+b\right)^2-1\right]\)
\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)
Bài 1. Phân tích đa thức sau thành nhân tử:
a) 12x²y - 18xy² - 30y³
b) 5x² - 5xy - 10x + 10y
c) a³ - 3a + 3b - b³
d) a⁴ + 6a²b + 9b² - 1
e) 4x² - 25 + (2x + 7)(5 - 2x)
f) x² + 2x - 15
g) x³ - 7x - 6
l) x⁴ + 4
h) x²y + 2xy +y
\(a,=6y\left(2x^2-3xy-5y^2\right)\\ =6y\left(2x^2+2xy-5xy-5y^2\right)\\ =6y\left(x+y\right)\left(2x-5y\right)\\ b,=5x\left(x-y\right)-10\left(x-y\right)=5\left(x-2\right)\left(x-y\right)\\ c,=\left(a-b\right)\left(a^2+ab+b^2\right)-3\left(a-b\right)\\ =\left(a-b\right)\left(a^2+ab+b^2-3\right)\\ d,=\left(a^2+3b\right)^2-1=\left(a^2+3b+1\right)\left(a^2+3b-1\right)\\ e,=\left(2x-5\right)\left(2x+5\right)-\left(2x+7\right)\left(2x-5\right)\\ =\left(2x-5\right)\left(2x+5-2x-7\right)\\ =-2\left(2x-5\right)\\ f,=x^2+5x-3x-15=\left(x+5\right)\left(x-3\right)\\ g,=x^3-x-6x-6\\ =x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\\ =\left(x+1\right)\left(x^2-x-6\right)\\ =\left(x+1\right)\left(x^2-3x+2x-6\right)\\ =\left(x+1\right)\left(x-3\right)\left(x+2\right)\\ l,=x^4+4x^2+4-4x^2\\ =\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\\ h,=y\left(x^2+2x+1\right)=y\left(x+1\right)^2\)
Phân tích đa thức thành nhân tử:
a)a^2+a^2y-7x-7y
b)4x^2-9y^2+4x-6y
c)x^2-2x+2y-7^2
d)4x^4+81
e)x^7+x^2+1
f)x^7+x^5+1
em cần gấp ạ
a) Sửa đề: \(a^2x+a^2y-7x-7y\)
\(=a^2\left(x+y\right)-7\left(x+y\right)=\left(x+y\right)\left(a^2-7\right)\)
b) \(=\left(2x-3y\right)\left(2x+3y\right)+2\left(2x-3y\right)=\left(2x-3y\right)\left(2x+3y+2\right)\)
\(c,Sửa:x^2-2x+2y-y^2=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right)\\ d,=\left(4x^4+36x^2+81\right)-36x^2\\ =\left(2x^2+9\right)^2-36x^2=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\\ e,=x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x^2+x-x+1\\ =x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
Bài 1. Phân tích các đa thức sau thành nhân tử:
a) 4a2-6b b) m3n-2m2n2-mn
Bài 2.Phân tích các đa thức sau thành nhân tử:
a) 4(2-u)2+uv-2v
b) a(a-b)3-b(b-a)2-b2(a-b)
Bài 1:
a: \(4a^2-6b=2\left(2a^2-3b\right)\)
b: \(m^3n-2m^2n^2-mn\)
\(=mn\left(m^2-2mn-1\right)\)
Bài 1:
a) \(4a^2-6b=2\left(a^2-3b\right)\)
b) \(=mn\left(m^2-2mn-1\right)\)
Bài 2:
a) \(=4\left(u-2\right)^2+v\left(u-2\right)=\left(u-2\right)\left(4u-8+v\right)\)
b) \(=a\left(a-b\right)^3-b\left(a-b\right)^2-b^2\left(a-b\right)=\left(a-b\right)\left[a\left(a-b\right)^2-b\left(a-b\right)-b^2\right]=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab+b^2-b^2\right)=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab\right)\)