tìm x biết 28x^3+3x^2+3x+1=0
Tìm x, biết:
a)(x-3)(x+3)-(x-1)2=0
b)x3-3x2+3x-1=0
c)4x2-28x=0
a) (x-3)(x+3)-(x-1)^2=0
=> (x^2-9)-(x^2-2x+1)=0
=>x^2-9-x^2+2x-1=0
=>(x^2-x^2)-9-1+2x=0
=>-10+2x=0
=>-2.(-5-x)=0
=>-5-x=0
=>-x=0+5
=>x=-5
vậy x=-5
b) x^3-3x^2+3x-1=0
=>(x-1)^3=0
=>x-1=0
=>x=0+1
=>x=1
vậy x=1
c) 4x^2-28x=0
=>4x.(x-7)=0
=> 2 TH
* 4x=0=>x=0
*x-7=0=>x=0+7=>x=7
vậy x=0 hoặc x=7
Tìm giá trị của đa thức sau :
1.\(A=x^{15}+3x^{14}+5\) biết x + 3 = 0
2.\(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)biết x = -3
3.\(C=21x^4+12x^3-3x^2+24x+15\)biết \(7x^3+4x^2-x+8=0\)
4.\(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)biết \(-4x^4-7x^3+4x^2-5x+8=0\)
Mn giải chi tiết hộ mik nha
1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)
Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)
Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)
\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)
1. \(A=x^{15}+3x^{14}+5\)
\(A=x^{14}\left(x+3\right)+5\)
\(A=x^{14}+5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=1^{2007}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15\)
\(C=3x\left(7x^2+4x^2-x+8+5\right)\)
\(C=3x\left(0+5\right)\)
\(C=15x\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)
\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
\(D=4x.0+2007\)
\(D=2007\)
với \(0\le x\le0.5\) tìm GTLN của biểu thức \(28x^3-24x^2+3x+1\)
rút gọn biểu thức
a)x(x-2)(x+2)+(x+3)(x^2-3x+9)
b)(3x+2)^2-18x(3x+2)+(x-1)^3-28x^3+3x(x-1)
Bài 1: Tìm x biết a) x^3 - 4x^2 - x + 4= 0 b) x^3 - 3x^2 + 3x + 1=0 c) x^3 + 3x^2 - 4x - 12=0 d) (x-2)^2 - 4x +8 =0
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
Giúp mình nhé
😀😀😀 tối mh nộp rồi
Tìm x biết: b,-10x^2-28x+6=0
c,3x^2+3x-6=0
d,x^2+10x+25=0
Lần sau đặt câu hỏi dưới dạng công thức như trên nhé!
\( a) - 10{x^2} - 28x + 6 = 0\\ \Leftrightarrow 5{x^2} + 14x - 3 = 0\\ \Leftrightarrow 5{x^2} + 15x - x - 3 = 0\\ \Leftrightarrow 5x\left( {x + 3} \right) - \left( {x + 3} \right) = 0\\ \Leftrightarrow \left( {x + 3} \right)\left( {5x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = - 3\\ x = \dfrac{1}{5} \end{array} \right.\\ b)3{x^2} + 3x - 6 = 0\\ \Leftrightarrow {x^2} + x - 2 = 0\\ PTVN\\ c){x^2} + 10x + 25 = 0\\ \Leftrightarrow {\left( {x + 5} \right)^2} = 0\\ \Leftrightarrow x + 5 = 0\\ \Leftrightarrow x = - 5 \)
\(a.-10x^2-28x+6=0\\\Leftrightarrow -10\left(x^2+\frac{14}{5}x-\frac{3}{5}\right)=0\\\Leftrightarrow x^2+\frac{14}{5}x-\frac{3}{5}=0\\\Leftrightarrow x^2-\frac{1}{5}x+3x-\frac{3}{5}=0\\\Leftrightarrow x\left(x-\frac{1}{5}\right)+3\left(x-\frac{1}{5}\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-\frac{1}{5}\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x+3=0\\x-\frac{1}{5}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=\frac{1}{5}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-3;\frac{1}{5}\right\}\)
Phương trình bậc cao
1/ 2X^3 + X +3 = 0
2/X + 3 căn 3X^2 + 7X -căn 3 =0
3/ 2X^3 +7X^2 -28X +12 =0
4/ 6X^3 -X^2 +14X +5 =0
x2( x + 1 ) + 2x( x + 1 ) = 0 <=> x( x + 1 )( x + 2 ) = 0 <=> x = 0 hoặc x = -1 hoặc x = -2
x( 3x - 1 ) - 5( 1 - 3x ) = 0 <=> x( 3x - 1 ) + 5( 3x - 1 ) = 0 <=> ( 3x - 1 )( x + 5 ) = 0 <=> x = 1/3 hoặc x = -5
Trả lời:
1, \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow x=0;x=-1;x=-2\)
Vậy x = 0; x = - 1; x = - 2 là nghiệm của pt.
2, \(x\left(3x-1\right)-5\left(1-3x\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)+5\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-5\end{cases}}}\)
Vậy x = 1/3; x = - 5 là nghiệm của pt.
Tìm x biết:
a) |5-3x|-2|x+3|=0
b) |3x+2|+|1-3x|=0