Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiết Phạm
Xem chi tiết
👁💧👄💧👁
1 tháng 6 2021 lúc 14:03

\(S_{xq}=\dfrac{4.8}{2}.5=80\left(cm^2\right)\\ S_{tp}=80+8^2=144\left(cm^2\right)\\ V=\dfrac{1}{3}.8^2.3=64\left(cm^3\right)\)

Nguyễn Ngọc Phương Trinh
Xem chi tiết
HT.Phong (9A5)
31 tháng 7 2023 lúc 15:54

Nữa chu vi đáy của hình chóp đều:

\(8\cdot4:2=16\left(cm\right)\)

Diện tích xung quanh của hình chóp đều:
\(S_{xq}=16\cdot5=80\left(cm^2\right)\)

Diện tích đáy của hình chóp đều:

\(S_đ=8^2=64\left(cm^2\right)\)

Diện tích toàn phần của hình chóp đều:

\(S_{tp}=S_đ+S_{xq}=64+80=144\left(cm^2\right)\)

Nguyễn Lê Phước Thịnh
31 tháng 7 2023 lúc 15:54

Sxq=1/2*8*4*5=80cm2

Stp=80+8^2=144cm2

NGUYỄN THỊ THÙY DƯƠNG
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 10 2023 lúc 14:01

loading...

Trong hình chóp tứ giác đều, đường cao kẻ từ đỉnh xuống đáy có chân đường cao là tâm của đáy và đường cao đó chính là trung đoạn của hình chóp

a: Vẽ SO\(\perp\)(ABCD)

=>SO là trung đoạn của hình chóp ABCD và O là tâm của hình vuông ABCD

=>O là trung điểm chung của AC và BD

ABCD là hình vuông

=>\(AC=BD=\sqrt{4^2+4^2}=4\sqrt{2}\left(cm\right)\)

=>\(AO=BO=CO=DO=\dfrac{4\sqrt{2}}{2}=2\sqrt{2}\left(cm\right)\)

SO vuông góc (ABCD)

=>SO vuông góc OD

=>ΔSOD vuông tại O

=>\(SO^2+OD^2=SD^2\)

=>\(SO^2=6^2-8=28\)

=>\(SO=2\sqrt{7}\left(cm\right)\)

b: \(S_{Xq}=p\cdot d=C_{đáy}\cdot SO=4\cdot4\cdot2\sqrt{7}=32\sqrt{7}\left(cm^2\right)\)

c: \(S_{tp}=S_{xq}+S_{đáy}\)

\(=32\sqrt{7}+4^2=32\sqrt{7}+16\left(cm^2\right)\)

.........
Xem chi tiết
keditheoanhsang
1 tháng 10 2023 lúc 8:57

a) Độ dài trung đoạn của hình chóp S.ABC là độ dài đoạn thẳng từ trung điểm của cạnh đáy đến đỉnh của hình chóp. Vì tam giác ABC là tam giác đều, nên ta có thể tính độ dài trung đoạn bằng cách sử dụng công thức Pythagoras: Trung đoạn = căn bậc hai của (AC^2 - (AC/2)^2) = căn bậc hai của (8^2 - (8/2)^2) = căn bậc hai của (64 - 16) = căn bậc hai của 48 = 4 căn 3 cm

b) Diện tích xung quanh của hình chóp S.ABC là tổng diện tích các mặt bên của hình chóp. Vì tam giác ABC là tam giác đều, nên diện tích mặt bên của hình chóp là diện tích tam giác đều. Ta có công thức tính diện tích tam giác đều: Diện tích tam giác đều = (cạnh^2 * căn 3) / 4 = (8^2 * căn 3) / 4 = 16 căn 3 cm^2

Diện tích xung quanh = Diện tích tam giác đều + Diện tích đáy = 16 căn 3 + 27,72 = 16 căn 3 + 27,72 cm^2

Diện tích toàn phần của hình chóp là tổng diện tích xung quanh và diện tích đáy: Diện tích toàn phần = Diện tích xung quanh + Diện tích đáy = 16 căn 3 + 27,72 + 27,72 = 16 căn 3 + 55,44 cm^2

c) Thể tích của hình chóp tam giác đều S.ABC được tính bằng công thức: Thể tích = (Diện tích đáy * Chiều cao) / 3 = (27,72 * 7,5) / 3 = 69,3 cm^3

Nguyễn Ngọc Phương Trinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2023 lúc 15:55

Sxq=16*4*17/2=544cm2

Stp=544+16^2=800cm2

V=1/3*16^2*15=1280cm3

HT.Phong (9A5)
31 tháng 7 2023 lúc 16:01

Nữa chu vi đáy của hình chóp đều:

\(16\cdot4:2=32\left(cm\right)\)

Diện tích xung quanh của hình chóp đều:

\(S_{xq}=32\cdot17=544\left(cm^2\right)\)

Diện tích mặt đáy của hình chóp đều:

\(S_đ=16^2=256\left(cm^2\right)\)

Diện tích toàn phần của hình chóp đều:

\(S_{tp}=S_đ+S_{xq}=544+256=800\left(cm^2\right)\)

Thể tích của hình chóp đều:
\(V=\dfrac{1}{3}\cdot256\cdot15=1280\left(cm^3\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 5 2018 lúc 8:40

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 9 2019 lúc 15:55

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 11 2017 lúc 10:52

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 1 2017 lúc 6:27

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:

Lý thuyết: Các công thức về hình chóp đều | Lý thuyết và Bài tập Toán 8 có đáp án

+ BD = AC = √ (82 + 82) = 8√ 2 ( cm ) ⇒ AO = BO = CO = DO = 4√ 2 ( cm )

Do đó:

+ Diện tích xung quanh của hình chóp đều là Sxq = p.d = p.OB = 16.4√ 2 = 64√ 2 ( cm2 ).

+ Diện tích toàn phần của hình chóp đều là

Stp = Sxq + SABCD = 64√ 2 + 82 = 64 + 64√ 2 ( cm2 )

+ Thể tích của hình chóp đều là V = 1/3S.h = 1/3.SABCD.SO = 1/3.82.10 = 640/3( cm3 )