Phân tích thành nhân tử
\(2x^3 y - 2xy^3 - 4xy^2 - 4x^2 y \)
phân tích thành nhân tử
`3x^2 -3xy-5x+5y`
`2x^3 y-2xy^3 -4xy^2 -2xy`
`x^2 -1+2x-y^2`
`x^2 +4x-2xy-4y+4y^2`
`x^3 -2x^2 +x`
`2x^2 +4x+2-2y^2`
a) \(3x^2-3xy-5x+5y\)
\(=\left(3x^2-3xy\right)-\left(5x-5y\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
b) \(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left[x^2-\left(y+1\right)^2\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
c) \(x^2+1+2x-y^2\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
d) \(x^2+4x-2xy-4y+y^2\)
\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)^2+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+4\right)\)
e) \(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
f) \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)+y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x-y+1\right)\left(x+y+1\right)\)
a: =3x(x-y)-5(x-y)
=(x-y)(3x-5)
b: \(=2xy\left(x^2-y^2-2y-1\right)\)
\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)
\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)
d:
Sửa đề: x^2+4x-2xy-4y+y^2
=x^2-2xy+y^2+4x-4y
=(x-y)^2+4(x-y)
=(x-y)(x-y+4)
e: =x(x^2-2x+1)
=x(x-1)^2
f: =2(x^2+2x+1-y^2)
=2[(x+1)^2-y^2]
=2(x+1+y)(x+1-y)
Phân tích thành nhân tử
a) x^2-2xy+y^2-9
b)2x^3+4x^2y+2xy^2
c)x^2-4xy+4y^2-36z^2
mk làm lun nha
(x-y)^2-3^2
=(x-y-3)(x-y+3)
các câu còn lại tương tự
**** cho mk nha
a)x2-2xy+y2-9
=(x-y)2-32
=(x-y-3)(x-y+3)
b)2x3+4x2y+2xy2
=2x(x2+2xy+y2)
=2x(x+y)2
c)x2-4xy+4y2-36z2
=(x-2y)2-(6z)2
=(x-2y-6z)(x-2y+6z)
\(x^2+4y^2-4xy-z^2+6z-9\)
\(=\left(x^2-4xy+4y^2\right)-\left(z^2-6z+9\right)\)
\(=\left(x-2y\right)^2-\left(z-3\right)^2\)
\(=\left(x-2y-z+3\right)\left(x-2y+z-3\right)\)
hk
tốt
37. Phân tích đa thưc 2x^3y - 2xy^3 - 4xy^2 - 2xy thành nhân tử ta đc:
A. 2xy (x-y-1) (x+y-1)
B. 16x - 54y^3 = 2(2x-3y) (4x^2 + 6xy + 9y^2)
C. 16x^3 - 54y = 2(2x - 3y) (2x + 3y) ^2
D. 16x^4 (x-y) - x + y = (4x^2 -1) (4x^2 + 1) (x-y)
\(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy.\left(x^2-y^2-2y-1\right)\)
\(=2xy.[x^2-\left(y^2+2y+1\right)]\)
\(=2xy.[x^2-\left(y+1\right)^2]\)
\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)
Vậy chọn đáp án A
Các bạn ơi giải hộ mình vs mình cần gấp:
phân tích các đa thức sau thành nhân tử:
X^3-2x^2-x+2
X^2+6x-y^2+9
Phân tích đa thức 2x^3y-2xy^3-4xy^2-2xy thành nhân tử
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)
Phân tích đa thức thành nhân tử bằng cách phối hợ nh` phương pháp
c, 2x3y-2xy3-4xy2-2xy
d, x2+4x-2xy-4y+4y2
e, x3-2x2+x
g, 2x2+4x+2-2y2
c) 2x^3y - 2xy^3 - 4xy^2 - 2xy
= 2xy ( x^2 - y^2 - 2y - 1 )
= 2xy ( x^2 - ( y^2 + 2y + 1 )
= 2xy ( x^2 - ( y + 1 )^2 )
= 2x ( x - y - 1 )( x + y + 1 )
sai bạn ơi !
đáp án là
= 2xy (x + y + 1) (x - y + 1)
that pun cho ban Nguyen Dieu Thao :((
Phân tích đa thức thành nhân tử bằng cách phối hợ nh` phương pháp
c, 2x3y-2xy3-4xy2-2xy
d, x2+4x-2xy-4y+4y2
e, x3-2x2+x
g, 2x2+4x+2-2y2
Phân tích mỗi đa thức sau thành nhân tử
a)x^3-2x^2y+xy^2+xy
b)x^3+4x^2y+4xy^2-9x
c)x^3-y^3+x-y
d)4x^2-4xy+2x-y+y^2
e)9x^2-3x+2y-4y^2
f)3x^2-6xy+3y^2-5x+5y
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)
phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định
4x^2 - 3y^2 - 4xy - 4x + 16y - 8
3x^2 + y^2 - 2xy +8x - 4y -3
phân tích đa thức thành nhân tử
a/ 16x^4(x-y)-x+y
b/2x^3y -2xy^3-4xy^2-2xy
c/x(y^2-z^2)+y(z^2-x^2)+z(x^2-y^2)
\(a,=\left(4x^2\right)^2\left(x-y\right)-\left(x-y\right)\)
\(=\left[\left(4x^2\right)^2-1^2\right]\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(4x^2-1\right)\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(2x+1\right)\left(2x-1\right)\left(x-y\right)\)