(5-2căn5/2căn5 -2).(5+3căn5/3căn5 -2)
(căn 5 + căn 3 ). căn(8-2căn5)
Tính
D= căn(4+căn(10+2căn5)) + căn(4-căn(10+2căn5))
\(D=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Rightarrow D^2=4+\sqrt{10+2\sqrt{5}}+2\sqrt{4+\sqrt{10+2\sqrt{5}}}.\sqrt{4-\sqrt{10+2\sqrt{5}}}+4-\sqrt{10+2\sqrt{5}}\)
\(=8+2\sqrt{4^2-\left(\sqrt{10+2\sqrt{5}}\right)^2}\)
\(=8+2\sqrt{16-10-2\sqrt{5}}\)
\(=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)
\(\Rightarrow D=\sqrt{5}+1\)
A= căn6 - 2căn5 + căn6 + 2căn5
B= căn4 - 2căn3 + căn4 + 2căn3
C= căn7 + 4căn3 + căn7 - 4căn3
\(A=2\sqrt{6}\)
\(B=2\sqrt{4}=4\)
\(C=2\sqrt{7}\)
rút gọn biểu thức sau:
a căn175-căn112+căn63
b căn(5-căn(13+căn48))
c 4căn20-3căn125+5căn45-15căn1/5
d (2căn8+3căn5-7căn2)(căn72-5căn20-2căn2)
a)(2căn8+3căn5-7căn2)(căn72-5căn20-2căn2) b)2căn8căn3-2căn5căn3-3căn20căn3 c)1/2+căn5+2căn2+căn10 d)3+4căn3/căn6+căn2-căn5
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề hơn nhé.
giải các phương trình
a,1/2x^2+3/4x+1=0
b,x^2-(2+căn5)x+2căn5=0
a) Ta có: \(\dfrac{1}{2}x^2+\dfrac{3}{4}x+1=0\)(1)
\(\Delta=\dfrac{9}{16}-4\cdot\dfrac{1}{2}\cdot1=\dfrac{9}{16}-2=-\dfrac{23}{16}\)
Vì \(\Delta< 0\) nên phương trình (1) vô nghiệm
Vậy: \(S=\varnothing\)
b) Ta có: \(x^2-\left(2+\sqrt{5}\right)x+2\sqrt{5}=0\)(2)
\(\Delta=\left(2+\sqrt{5}\right)^2-4\cdot1\cdot2\sqrt{5}=9+4\sqrt{5}-8\sqrt{5}=9-4\sqrt{5}>0\)
Vì \(\Delta>0\) nên phương trình (2) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{2+\sqrt{5}-\sqrt{9-4\sqrt{5}}}{2\cdot1}=\dfrac{2+\sqrt{5}-\sqrt{5}+2}{2\cdot1}=\dfrac{4}{2}=2\\x_2=\dfrac{2+\sqrt{5}+\sqrt{9-4\sqrt{5}}}{2\cdot1}=\dfrac{2+\sqrt{5}+\sqrt{5}-2}{2\cdot1}=\dfrac{2\sqrt{5}}{2}=\sqrt{5}\end{matrix}\right.\)
Vậy: \(S=\left\{2;\sqrt{5}\right\}\)
1. tính
A= căn(4- 2căn3) + căn 27
B= căn(14- 6căn5) + căn125
2. Phân tích thành nhân tử
a, x-4 (x>0)
b, x^2 + 2căn3 . x+3
c, x^2 - 2căn5 . x+5
Bài 1 :
\(A=\sqrt{4-2\sqrt{3}}+\sqrt{27}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{27}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+3\sqrt{3}\)
\(=\left|\sqrt{3}-1\right|+3\sqrt{3}\)
\(=\sqrt{3}-1+3\sqrt{3}\)
\(=4\sqrt{3}-1\)
\(B=\sqrt{14-6\sqrt{5}}+\sqrt{125}\)
\(=\sqrt{9-6\sqrt{5}+5}+\sqrt{125}\)
\(=\sqrt{\left(3-\sqrt{5}\right)}^2+5\sqrt{5}\)
\(=\left|3-\sqrt{5}\right|+5\sqrt{5}\)
\(=3-\sqrt{5}+5\sqrt{5}\)
\(=3+4\sqrt{5}\)
Cần gấp, m.n ơi giúp vs
X^2căn5 - 20 =0
\(x^2\sqrt{5}-20=0\)
\(x^2\sqrt{5}=20\)
\(x^2=\frac{20}{\sqrt{5}}\)
\(x^2=\frac{\left(\sqrt{20}\right)^2}{\sqrt{5}}\)
\(x^2=\frac{\left(2\sqrt{5}\right)^2}{\sqrt{5}}\)
\(x^2=4\sqrt{5}\)
\(x=\sqrt{4\sqrt{5}}\)
vậy \(x=\sqrt{4\sqrt{5}}\)
\(A=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{8\sqrt{x}}{x-1}\right):\left(\frac{\sqrt{x}-x-3}{x-1}-\frac{1}{\sqrt{x}-1}\right)\)
a. rút gọn
b. tính A với x = 6 -2căn5
c. chứng minh A \(\le1\)
giúp mình với ạ, mình cảm ơn