Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dorae mon
Xem chi tiết
Akai Haruma
19 tháng 8 2023 lúc 17:33

Những câu đã đăng rồi thì em hạn chế đăng lại nhé.

Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 19:35

a: \(=\dfrac{\left(4\sqrt{3}-5\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}\right)}{\sqrt{3}}\)

=4-5+1/2*4

=-1+2

=1

b: \(=\left|2-\sqrt{5}\right|-\left|\sqrt{5}+1\right|\)

\(=\sqrt{5}-2-\sqrt{5}-1=-3\)

c: \(=\dfrac{3\left(\sqrt{7}+2\right)}{3}-\dfrac{4\left(3-\sqrt{7}\right)}{2}\)

\(=\sqrt{7}+2-2\left(3-\sqrt{7}\right)\)

\(=\sqrt{7}+2-6+2\sqrt{7}=3\sqrt{7}-4\)

d: \(=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-\dfrac{1}{4}\cdot8\sqrt{2a}\)

\(=3\sqrt{2a}-3a\cdot\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}\)

\(=\sqrt{2a}\left(3-3a\right)\)

e: \(=\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}-\dfrac{2\left(\sqrt{3}+1\right)}{2}\)

\(=\sqrt{3}-\sqrt{3}-1=-1\)

Dorae mon
Xem chi tiết
HT.Phong (9A5)
19 tháng 8 2023 lúc 16:16

a) \(A=\left(2\sqrt{12}-\sqrt{75}+\dfrac{1}{2}\sqrt{48}\right):\sqrt{3}\)

\(A=\left(4\sqrt{3}-5\sqrt{3}+2\sqrt{3}\right):\sqrt{3}\)

\(A=\sqrt{3}:\sqrt{3}\)

\(A=1\)

b) \(B=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(B=\left|2-\sqrt{5}\right|-\left|\sqrt{5}+1\right|\)

\(B=-2+\sqrt{5}-\sqrt{5}-1\)

\(B=-3\)

c) \(C=\dfrac{3}{\sqrt{7}-2}-\dfrac{4}{3+\sqrt{7}}\)

\(C=\dfrac{3\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\dfrac{4\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)

\(C=\dfrac{3\left(\sqrt{7}+2\right)}{3}-\dfrac{4\left(3-\sqrt{7}\right)}{2}\)

\(C=\sqrt{7}+2-2\left(3-\sqrt{7}\right)\)

\(C=\sqrt{7}+2-6+2\sqrt{7}\)

\(C=3\sqrt{7}-4\)

d) \(D=3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\)

\(D=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-\dfrac{1}{4}\cdot8\sqrt{2a}\)

\(D=5\sqrt{2a}-3a\sqrt{2a}-2\sqrt{2a}\)

\(D=3\sqrt{2a}-3a\sqrt{2a}\)

e) \(E=\dfrac{3+\sqrt{3}}{\sqrt{3}}-\dfrac{2}{\sqrt{3}-1}\)

\(E=\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}-\dfrac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(E=\left(\sqrt{3}+1\right)-\dfrac{2\left(\sqrt{3}+1\right)}{2}\)

\(E=\left(\sqrt{3}+1\right)-\left(\sqrt{3}+1\right)\)

\(E=0\)

Akai Haruma
19 tháng 8 2023 lúc 16:23

Lời giải:

a. 

\(A=2\sqrt{\frac{12}{3}}-\sqrt{\frac{75}{3}}+\frac{1}{2}\sqrt{\frac{48}{3}}=2\sqrt{4}-\sqrt{25}+\frac{1}{2}\sqrt{16}\)

\(2.2-5+\frac{1}{2}.4=1\)

b. 

\(B=|2-\sqrt{5}|-|\sqrt{5}+1|=\sqrt{5}-2-(\sqrt{5}+1)=-3\)

c. 

\(C=\frac{3(\sqrt{7}+2)}{(\sqrt{7}-2)(\sqrt{7}+2)}-\frac{4(3-\sqrt{7})}{(3+\sqrt{7})(3-\sqrt{7})}\)

\(=\frac{3(\sqrt{7}+2)}{7-2^2}-\frac{4(3-\sqrt{7})}{3^2-7}\)

\(=\frac{3(\sqrt{7}+2)}{3}-\frac{4(3-\sqrt{7})}{2}=\sqrt{7}+2-2(3-\sqrt{7})=-4+3\sqrt{7}\)

e. 

\(E=\frac{\sqrt{3}(\sqrt{3}+1)}{\sqrt{3}}-\frac{2(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}=\sqrt{3}+1-\frac{2(\sqrt{3}+1)}{3-1^2}=(\sqrt{3}+1)-(\sqrt{3}+1)=0\)

Thu Huyền
Xem chi tiết
HT.Phong (9A5)
30 tháng 6 2023 lúc 8:05

a) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=\left(2x+3\right)\left[\left(2x\right)^2-2x\cdot3+3^2\right]-2\left(4x^3-1\right)\)

\(=\left[\left(2x\right)^3+3^3\right]-2\left(4x^3-1\right)\)

\(=\left(8x^3+27\right)-8x^3+2\)

\(=8x^3+27-8x^3+2\)

\(=29\)

Vậy: ....

c) \(2\left(x^3+y^3\right)-3\left(x^3+y^3\right)\)

\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3x^2-3y^2\)

\(=2\left(x^2-xy+y^2\right)\cdot1-3x^2-3y^2\)

\(=2x^2-2xy+2y^2-3x^2-3y^2\)

\(=-x^2-2xy-y^2\)
\(=-\left(x^2+2xy+y^2\right)\)

\(=-\left(x+y\right)^2\)

\(=-\left(1\right)^2=-1\)

Vậy: ...

Nguyễn Thùy Linh
Xem chi tiết
Nguyễn Ngọc Lộc
8 tháng 5 2021 lúc 13:09

a, Ta có : \(\sin^2x+\cos^2x=1\)

\(\Rightarrow\sin x=\sqrt{1-\cos^2x}=\left|\dfrac{\sqrt{15}}{4}\right|\)

\(0< x< \dfrac{\pi}{2}\)

\(\Rightarrow\sin x=\dfrac{\sqrt{15}}{4}\)

Ta lại có : \(\left\{{}\begin{matrix}\sin2x=2\sin x\cos x=\dfrac{\sqrt{15}}{8}\\\cos2x=2\cos^2x-1=-\dfrac{7}{8}\end{matrix}\right.\)

Vậy ...

c, Ta có : \(\tan2x=\dfrac{2\tan x}{1-\tan^2x}=\dfrac{4}{3}=\dfrac{\sin2x}{\cos2x}\)

- Ta có HPT : \(\left\{{}\begin{matrix}\sin^22x+\cos^22x=1\\3\sin2x-4\cos2x=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sin2x=\left|\dfrac{4}{5}\right|\\\cos2x=\left|\dfrac{3}{5}\right|\end{matrix}\right.\)

Lại có : \(\pi< x< \dfrac{3}{2}\pi\)

\(\Rightarrow\left\{{}\begin{matrix}\sin2x=\dfrac{4}{5}\\\cos2x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy ...

 

Trân
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
17 tháng 6 2023 lúc 14:21

`@` `\text {Ans}`

`\downarrow`

`b,`

\(B=x^6 - 20x^5 - 20x^4 - 20x^3 - 20x^2 - 20x + 3\) tại `x=21`

Ta có: `20 = 21 - 1 => 20 = x-1`

Thay `20 = x-1` vào, ta có:

\(x^6-\left(x-1\right)x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+3\)

`=`\(x^6-x^6+x^5-x^5+x^4-x^4+...+x+3\)

`=`\(x+3\)

`=`\(21+3=24\)

Vậy, `B=24`

『Kuroba ム Tsuki Ryoo...
17 tháng 6 2023 lúc 14:33

`c,`

`C=`\(x^7-26x^6+27x^5-47x^4-77x^3+50x^2+x-24\) tại `x=25`

`=`\(x^7-25x^6-x^6+25x^5+2x^5-50x^4+3x^4-75x^3-2x^3+50x^2+x-24\)

`=`\(x^6\left(x-25\right)-x^5\left(x-25\right)+2x^4\left(x-25\right)+3x^3\left(x-25\right)-2x^2\left(x-25\right)+x-24\)

`=`\(\left(x^6-x^5+2x^4+3x^3-2x^2\right)\left(x-25\right)+x-24\)

Thay `x=25` vào bt C, ta được:

\(\left(25^6-25^5+2\cdot25^4+3\cdot25^3-2\cdot25^2\right)\left(25-25\right)+25-24\)

`=`\(\left(25^6-25^5+2\cdot25^4+3\cdot25^3-2\cdot25^2\right)\cdot0+1\)

`= 0+1=1`

Vậy, `C=1.`

Trân
Xem chi tiết
YangSu
13 tháng 6 2023 lúc 13:25

\(a,2x^3-6x^2-2x\left(x^2-3x+2\right)\)

\(=2x^3-6x^2-2x^3+6x^2-4x\)

\(=\left(2x^3-2x^3\right)+\left(-6x^2+6x^2\right)-4x\)

\(=0+0-4x\)

\(=-4x\)

\(b,-6x^2\left(3x-1\right)+2x\left(9x^2+5x\right)\)

\(=-18x^3+6x^2+18x^3+10x^2\)

\(=\left(-18x^3+18x^3\right)+\left(6x^2+10x^2\right)\)

\(=0+16x^2\)

\(=16x^2\)

lynguyenmnhthong
13 tháng 6 2023 lúc 13:30

a. \(2x^3-6x^2-2x\left(x^2-3x+2\right)\\ =2x^3-6x^2-2x^3+6x^2-4x\\ =-4x\)

b. \(-6x^2\left(3x-1\right)+2x\left(9x^2+5x\right)\\ =-18x^3+6x^2+18x^3+10x^2\\ =6x^2+10x^2\\ =16x^2\)

Loan
Xem chi tiết
Nguyễn Trần Thành Đạt
26 tháng 9 2021 lúc 9:12

\(b,\left(1\right)4Al+3O_2\underrightarrow{^{to}}2Al_2O_3\\ \left(2\right)Al_2O_3+3H_2SO_4\rightarrow Al_2\left(SO_4\right)_3+3H_2O\\ \left(3\right)Al_2\left(SO_4\right)_3+3BaCl_2\rightarrow3BaSO_4\downarrow+2AlCl_3\\ \left(4\right)AlCl_3+3AgNO_3\rightarrow Al\left(NO_3\right)_3+3AgCl\downarrow\\ \left(5\right)Al\left(NO_3\right)_3+3KOH\rightarrow Al\left(OH\right)_3\downarrow+3KNO_3\\ \left(6\right)2Al\left(OH\right)_3\underrightarrow{^{to}}Al_2O_3+3H_2O\)

Nguyễn Trần Thành Đạt
26 tháng 9 2021 lúc 9:22

\(d,\left(1\right)3Fe+2O_2\underrightarrow{^{to}}Fe_3O_4\\ \left(2\right)Fe_3O_4+4CO\underrightarrow{^{to}}3Fe+4CO_2\\ \left(3\right)FeO+H_2\underrightarrow{^{to}}Fe+H_2O\\ \left(4\right)Fe+4HNO_3\rightarrow Fe\left(NO_3\right)_3+NO+2H_2O\\ \left(5\right)2Fe\left(NO_3\right)_3+Fe\rightarrow3Fe\left(NO_3\right)_2\\ \left(6\right)Fe\left(NO_3\right)_2+2KOH\rightarrow Fe\left(OH\right)_2\downarrow+2KNO_3\\ \left(7\right)4Fe\left(OH\right)_2+O_2+2H_2O\rightarrow4Fe\left(OH\right)_3\)

hyuo
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 2 2023 lúc 22:27

c.

Gọi E là trung điểm AD \(\Rightarrow EM\) là đường trung bình tam giác SAD

\(\Rightarrow\left\{{}\begin{matrix}EM=\dfrac{1}{2}SA=a\\EM||SA\Rightarrow EM\perp\left(ABCD\right)\end{matrix}\right.\)

\(\Rightarrow EC\) là hình chiếu vuông góc của CM lên (ABCD)

\(\Rightarrow\widehat{MCE}\) là góc giữa SM và (ABCD)

\(ED=\dfrac{1}{2}AD=a\Rightarrow EC=\sqrt{CD^2+ED^2}=a\sqrt{2}\)

\(\Rightarrow tan\widehat{MCE}=\dfrac{EM}{EC}=\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{MCE}=...\)

e.

Gọi O là trung điểm BD, qua A kẻ đường thẳng song song BD cắt OE kéo dài tại F

\(\Rightarrow ABOF\) là hình bình hành (2 cặp cạnh đối song song)

\(\Rightarrow\left\{{}\begin{matrix}AF=OB=\dfrac{1}{2}BD\\AF||BD\end{matrix}\right.\)

Lại có MN là đường trung bình tam giác SBD \(\Rightarrow\left\{{}\begin{matrix}MN=\dfrac{1}{2}BD\\MN||BD\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}MN=AF\\MN||AF\end{matrix}\right.\) \(\Rightarrow ANMF\) là hình bình hành

\(\Rightarrow AN||MF\Rightarrow\left(AN;CM\right)=\left(AN;MF\right)=\widehat{CMF}\) nếu nó ko tù hoặc bằng góc bù của nó nếu \(\widehat{CMF}\) là góc tù

Ta có: \(MF=AN=\dfrac{a\sqrt{5}}{2}\) ; \(CM=\sqrt{CE^2+EM^2}=a\sqrt{3}\)

ABOF là hình bình hành nên AODF cũng là hình bình hành \(\Rightarrow E\) là tâm hình bình hành

\(\Rightarrow EF=OF=\dfrac{AB}{2}=\dfrac{a}{2}\)

Gọi G là giao điểm OE và BC \(\Rightarrow FG=EG+EF=a+\dfrac{a}{2}=\dfrac{3a}{2}\)

\(\Rightarrow CF=\sqrt{FG^2+CG^2}=\dfrac{a\sqrt{13}}{2}\)

ĐỊnh lý hàm cos:

\(cos\widehat{CMF}=\dfrac{CM^2+MF^2-CF^2}{2CM.MF}=\dfrac{\sqrt{15}}{15}\Rightarrow\widehat{CMF}\)

Nguyễn Việt Lâm
28 tháng 2 2023 lúc 22:28

loading...