Cho x= 1+\(\sqrt{2021}\). Tính giá trị biểu thức
Q= \(x^5-2x^4-2021x^3+3x^2+2018x-2021\)
Cho x= 1+. Tính giá trị biểu thức
Q=
tính giá trị của biểu thức:x^6-2021x^5+2021x^4-2021x^3+2021x^2-2021x+2021 tại x =2020
giúp mình với các bạn
\(x=2020\\ \Leftrightarrow x+1=2021\)
Thay vào biểu thức:
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\\ =x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+1=1\)
x=2020
=>x+1=2021
thay vào ta có
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+2021\)
\(=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2021\)
\(=-x+2021\)
\(=-2020+2021\)
\(=1\)
\(x^6-\left(2020+1\right)x^5+\left(2020+1\right)x^4-\left(2020+1\right)x^3+\left(2020+1\right)x^2-\left(2020+1\right)x+2021\)
\(x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+2021\) (vì x=2020)
\(x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2021\)\(=-x+2021=2021-2020=1\)
(bạn không hiểu chỗ nào thì hỏi lại mik nhé) chúc bạn buổi sáng tốt lành
Rút gọn:
a) A=(5-2x)2-4x(x-5)
b) B= (4-3x)(4+3x)+(3x+1)2
c) C= (x+1)3-x(x2+3x+3)
d) D=(2021x-2020)2-2(2021x-2020)(2020x-2021)+(2020x-2021)
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
Tính giá trị biểu thức:
a) A = x^6 - 2021x^5 + 2021x^4 - 2021x^3 + 2021x^2 - 2021x + 2021 tại x = 2020
b) B = x^10 + 20x^9 + 20x^8 +...+ 20x^2 + 20x + 20 với x = -19
a) Có x = 2020 => x + 1 = 2021. Thay 2021 = x + 1 vào A
\(A=x^6-\left(x+1\right)^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(A=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(A=1\)
b) Có x = -19 => x - 1 = -20 => - ( x - 1 ) = 20. Thay 20 = - ( x - 1) vào B
\(B=x^{10}-\left(x-1\right)x^9-\left(x-1\right)x^8-\left(x-1\right)x^7-...-\left(x-1\right)x^2-\left(x-1\right)x-x+1\)
\(B=x^{10}-x^{10}+x^9-x^9+...+x^2-x^2+x-x+1\)
\(B=1\)
Chúc bạn học tốt!!!
Tinh giá trị biểu thức A=x^6-2021x^5+2021x^4-2021x^3+2021x^2-2021x+2021 tại x=2010
Thay 2021 = x + 1 vào A
A = x6 - ( x + 1 ) .x5 + ( x + 1 ). x4 - ( x + 1 ). x3 + ( x + 1 ) .x2 - ( x + 1 ) .x + ( x + 1 )
= x6 - x6 - x5 + x5 + x4 - x4 - x3 + x3 + x2 - x2 - x + x + 1
= 1
Vậy A = 1
Tính giá trị của biểu thức A= x2021-2021x2020+2021x2019-2021x2018+....-2021x2+2021x-2021 khi x=2020
Ta có x = 2020
=> x + 1 = 2021
A = x2021 - 2021x2020 + .... + 2021x - 2021
= x2021 - (x + 1)x2020 + .... + (x + 1)x - (x + 1)
= x2021 - x2021 - x2020 + .... + x2 + x - x + 1
= 1
Vậy A = 1
Ta có : \(x=2020\Rightarrow x+1=2021\)
\(A=x^{2021}-\left(x+1\right)x^{2020}+\left(x+1\right)x^{2019}-\left(x+1\right)x^{2018}+...-\left(x+1\right)x^2+\left(x+1\right)x-2021\)
= x2021 - x2021 - x2020 + x2020 + x2019 - x2019 - x2018 + ... - x3 - x2 + x2 + x - 2021 = x - 2021
mà x = 2020 hay 2020 - 2021 = -1
Vậy với x = 2020 thì A = -1
Tính giá trị của biểu thức N=x^2019 +3x^2020-2x^2021 với x=\(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3+2\sqrt{ }2}\)
\(x=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3+2\sqrt{2}}\)
Ta có: Đặt \(A=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}\)=> \(A^2=\frac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{\sqrt{5}+1}\)
=> \(A^2=\frac{2\sqrt{5}+2\sqrt{5-4}}{\sqrt{5}+1}=\frac{2\left(\sqrt{5}+1\right)}{\sqrt{5}+1}=2\)=> \(A=\sqrt{2}\)
\(\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
==> \(x=\sqrt{2}-\left(\sqrt{2}+1\right)=-1\)
Do đó: N = (-1)2019 + 3.(-1)2020 - 2.(-1)2021 = -1 + 3 + 2 = 4
Cho x = 2020, tính giá trị:
P(x) = x^2021-2021x^2020+2021x^2019-2021x^2018+...+2021x-2020
x=2020 nên x+1=2021
\(P\left(x\right)=x^{2021}-x^{2020}\left(x+1\right)+x^{2019}\left(x+1\right)-....+x\left(x+1\right)-2020\)
\(=x^{2021}-x^{2021}-x^{2020}+x^{2020}-...+x^2+x-2020\)
=x-2020=0
Cho đa thức: f(x)= x^3/1-3x+3x^2
a) cm: f(x) + f(1-x)=1
b) Tính giá trị biểu thức: P= f(1/2021)+f(2/2021)+...+f(2019/2021)+ f(2020/2021)