Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Ngan
Xem chi tiết
linh ngoc
Xem chi tiết
Pham Van Hung
21 tháng 11 2018 lúc 19:12

Ta có: \(3x^3+ax+b=\left(x+1\right)Q\left(x\right)+6\) (1)

\(3x^3+ax+b=\left(x-3\right)P\left(x\right)+70\)(2)

Thay \(x=-1\) vào (1) và x = 3 vào (2), ta có: 

\(\hept{\begin{cases}3.\left(-1\right)^3+a.\left(-1\right)+b=6\\3.3^3+3a+b=70\end{cases}\Rightarrow\hept{\begin{cases}-a+b=9\\3a+b=-11\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}3a+b-\left(-a+b\right)=-11-9\\3a+b=-11\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4a=-20\\3a+b=-11\end{cases}\Rightarrow\hept{\begin{cases}a=-5\\b=4\end{cases}}}\)

Le Ngan
Xem chi tiết
Nguyễn Phan Nhật Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 11 2021 lúc 13:46

a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)

hay a=7

Vũ Minh Hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 11 2022 lúc 14:33

a: \(\Leftrightarrow x^4+x^3-x^3-x^2+\left(a+1\right)x^2+\left(a+1\right)x-\left(a+1\right)x-a-1+b⋮x+1\)

=>b=0 và a+1=0

=>a=-1 và b=0

b: \(\dfrac{2x^3+ax+b}{x+1}=\dfrac{2x^3+2x^2-2x^2-2x+\left(a+2\right)x+a+2+b-a-2}{x+1}\)

=>b-a-2=6

\(\dfrac{2x^3+ax+b}{x-1}\)

\(=\dfrac{2x^3-2x^2+2x^2-2x+\left(a+2\right)x-a-2+a+2+b}{x-1}\)

=>a+b+2=21

=>a=11/2; b=27/2

 

Phạm Hà Sơn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 5 2019 lúc 4:13

duonghoangkhanhphuong
Xem chi tiết
bui van trong
27 tháng 10 2021 lúc 10:18

p(x)=\(x^3+ã^2+bx+c\)

với x=1 thì p(1)=0 hay

\(1+a+b+c=0\)

p(x) \(chia\)p(x-2) dư 6

với x=2 =>\(4a+2b+c+8=6< =>4a+2b+c=-2\)

tương tự với cái còn lại

xong bạn giải hệ phương trình bậc nhất ba ẩn là xong

Khách vãng lai đã xóa
Slendrina
Xem chi tiết
Phạm Thị Thu Ngân
20 tháng 3 2017 lúc 20:05

a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)

Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:

\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)

<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5

Lưu Hiền
20 tháng 3 2017 lúc 20:07

lười quá ~~

bài 1

vì đa thức bị chia bậc 2, đa thức chia bậc nhất

=> đa thức thương sẽ có dạng bx+c

theo đề ta có

\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)

vậy a = -5

bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé

Phạm Thị Thu Ngân
20 tháng 3 2017 lúc 20:20