Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Nguyễn Hoàng Minh
28 tháng 10 2021 lúc 11:14

Áp dụng BĐT cosi dạng \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\cdot\dfrac{1}{4}\ge\dfrac{4}{a+b}\cdot\dfrac{1}{4}\\ \Leftrightarrow\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(\Leftrightarrow\dfrac{a}{2a+b+c}=\dfrac{a}{a+b+a+c}\le\dfrac{a}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\)

Cmtt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{a+2b+c}\le\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{c}{a+b+2c}\le\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

Cộng VTV 3 BĐT trên:

\(\Leftrightarrow VT\le\dfrac{1}{4}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\\ \Leftrightarrow VT\le\dfrac{1}{4}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\right)=\dfrac{1}{4}\cdot3=\dfrac{3}{4}\)

Dấu \("="\Leftrightarrow a=b=c\)

Phạm Quang Kiệt
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 4 2022 lúc 17:22

Nếu p;q;r đều lẻ hoặc có đúng 1 số trong 3 số là lẻ \(\Rightarrow p^2+q^2+r^2\) lẻ, trong khi 5054 chẵn (ktm)

\(\Rightarrow\) Cả p;q;r đều chẵn (loại do \(2^2+2^2+2^2< 5054\)) hoặc có đúng 1 số trong 3 số là chẵn

Do vai trò 3 số như nhau, ko mất tính tổng quát, giả sử r chẵn \(\Rightarrow r=2\)

\(\Rightarrow p^2+q^2=5050\)

Nếu p; q đều chia hết cho 3 \(\Rightarrow p=q=3\Rightarrow ktm\)

Nếu p;q đều ko chia hết cho 3 \(\Rightarrow p^2\) và \(q^2\) đều chia 3 dư 1

\(\Rightarrow p^2+q^2\) chia 3 dư 2 trong khi \(5050\) chia 3 dư 1 (ktm)

\(\Rightarrow\) Có đúng 1 số trong p; q chia hết cho 3, ko mất tính tổng quát, giả sử là p \(\Rightarrow p=3\)

\(\Rightarrow q^2=5050-9=5041\Rightarrow q=71\) là SNT (thỏa mãn)

Vậy bộ 3 số nguyên tố thỏa mãn là \(\left(2;3;71\right)\) và các hoán vị

Xyz OLM
5 tháng 4 2022 lúc 17:46

Vì tổng của p2 + q2 + r2 \(⋮2\)

=> \(\left[{}\begin{matrix}p⋮2\\q⋮2\\r⋮2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}p=2\\q=2\\r=2\end{matrix}\right.\)

Giả sử r = 2 => p2 + q2 = 5050 ; p;q lẻ 

=> Chữ số tận cùng p2 chỉ có thể là 9;1

=> Chư số tận cùng p là 1;3;7;9

mà p2 + q2 = 5050 => q2 \(< 5050\) ; p2 < 5050

<=> q < 72 (1) ; p < 72 (2) 

Lại có p2 + q2 = 5050

<=> 2pq = 5050 - (p - q)2 < 5050

<=> pq \(< 2525\) (3)

Từ (1) ; (3) => p >  35 (4)

Từ (2) ; (4) => 35 < p < 72

<=> p \(\in\left\{37;41;43;47;53;59;61;67;71\right\}\)

Thử từng giá trị p => tìm được p = 71 thỏa mán 

thay vào pt gốc được q = 3 (tm)

Vậy các cặp (p;q;r) thỏa là (71;3;2) và các hoán vị 

 

 

Hồ Nhật Phi
5 tháng 4 2022 lúc 17:51

Giả sử p<q<r.

Số 2 là số nguyên tố chẵn duy nhất.

Số lẻ có dạng 2k+1 (k\(\in\)N), bình phương của số lẻ là (2k+1)2=4k2+4k+1 là một số lẻ.

Mà p2+q2+r2 là một số chẵn (=5054), suy ra p=2.

q2+r2=5050 \(\Rightarrow\) q2<2525 \(\Rightarrow\) 3\(\le\)q<50.

Với q=3 \(\Rightarrow\) r=71 (nhận).

Vậy ba số nguyên tố cần tìm là 2, 3 và 71.

Phạm Kim Oanh
Xem chi tiết
Xyz OLM
5 tháng 4 2022 lúc 18:20

Với p = 2 => 8p2  +1 = 33 (loại)

Với p = 3 => 8p2 + 1 = 73 (tm)

Với p > 3 => Đặt p = 3k + 1 ; p = 3k + 2 (k \(\in Z^+\)

Với p = 3k + 1 => 8p2 + 1 = 8(3k + 1)2 + 1 

= 72k2 + 48k + 9 = 3(24k2 + 16k + 3) \(⋮3\)(loại)

Với p = 3k + 2 => 8p2 + 1 = 8(3k + 2)2 + 1 

= 72k2 + 96k + 33 = 3(24k2 + 32k + 11) \(⋮3\)(loại)

Vậy p = 3 thì 8p2 + 1 \(\in P\)

Nguyễn Việt Lâm
5 tháng 4 2022 lúc 18:20

- Với \(p=2\) ko thỏa mãn

- Với \(p=3\Rightarrow8p^2+1=73\) là số nguyên tố (thỏa mãn)

- Với \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)

\(\Rightarrow p^2=3k+1\)

\(\Rightarrow8p^2+1=8\left(3k+1\right)+1=24k+9=3\left(8k+3\right)\) là số lớn hơn 3 và chia hết cho 3

\(\Rightarrow8p^2+1\) là hợp số (ktm)

Vậy \(p=3\) là SNT duy nhất thỏa mãn yêu cầu

Phạm Kim Oanh
Xem chi tiết
Trên con đường thành côn...
20 tháng 4 2022 lúc 21:19

undefined

Phạm Kim Oanh
Xem chi tiết
Xyz OLM
5 tháng 4 2022 lúc 18:50

Với p = 2 => 2p + p2 = 8 (loại)

Với p = 3 => 23 + 32 = 17 (loại) 

Nhận thấy với p > 3 => p lẻ 

Đặt p = 3k + 1 ; p = 3k + 2 (k \(\in Z^+\))

Khi đó P = 2p + p2 

= (2p + 1) + (p2 - 1)

Vì p lẻ => 2p + 1 = (2 + 1).(2p - 1 - 2p - 2 + ... + 1) \(⋮3\)(1) 

Với p = 3k + 1 => p2 - 1 = (p - 1)(p + 1) = (3k + 1 - 1)(3k + 1 + 1)

= 3k(3k + 2) \(⋮3\) (2) 

Từ (1) ; (2) => P \(⋮3\)(loại)

Với p = 3k + 2 => p2 - 1 = (p - 1)(p + 1) = (3k + 2 - 1)(3k + 2 + 1)

= 3(k + 1)(3k + 1) \(⋮\)3 (3) 

Từ (1) ; (3) => P \(⋮3\)

=> p = 3 là giá trị cần tìm 

Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết