Cho s = 1^2008 + 2^2008+ 3^2008+ 4^2008 tìm du của phép chia s cho 11
Tìm dư của S khi chia cho 11
Bài 1: Cho A = \(17^{2008}-11^{2008}-3^{2008}.\) Tìm chữ số hàng đơn vị của A .
Bài 2: Cho M = \(17^{25}+24^4-13^{21}.\)
Chứng tỏ M chia hết cho 10
BÀi 3 : Cho S = \(1+3^1+3^2+.....+3^{30}\)
Tìm chữ số tận cùng của S , từ đó suy ra S ko phải số chính phương
Giúp mik nha thanks.
A=\(17^{2008}-11^{2008}-3^{2008}\)
A=\(\left(17^4\right)^{502}-11^{2008}-\left(3^4\right)^{502}\)
A=\(83521^{502}-11^{2008}-81^{502}\)
A=\(\left(......1\right)-\left(.......1\right)-\left(........1\right)\)
A=\(\left(.........9\right)\)
Vậy A có chữ số tận cùng là 9
2)M=\(17^{25}+24^4-13^{21}\)
M=\(17^{24}\cdot17+\left(24^2\right)^2-13^{20}\cdot13\)
M=\(\left(17^4\right)^6\cdot17+576^2-\left(13^4\right)^5\cdot13\)
M=\(83521^6\cdot17+\left(......6\right)-28561^5\cdot13\)
M=\(\left(.......1\right)\cdot17+\left(........6\right)-\left(.........1\right)\cdot13\)
M=\(\left(........7\right)+\left(..........6\right)-\left(...........3\right)\)
M=\(\left(...........0\right)⋮10\)
Vậy M\(⋮10\)
a,Tìm số dư trong phép chia 3^2021 cho 13
b,tìm số dư trong phép chia 2008^2008 cho 7
a,Tìm số dư trong phép chia 3^2021 cho 13
b,tìm số dư trong phép chia 2008^2008 cho 7
a) Ta có: \(3^{2021}=3^{2019}\cdot3^2=\left(3^3\right)^{673}\cdot3^2\equiv1.3^2=9\left(mod13\right)\)
Vậy số dư của \(3^{2021}\) cho 13 là 9.
b) \(2008^{2008}=\left(2008^2\right)^{1004}\equiv1^{1004}=1\) (mod 7)
Vậy số dư của $2008^{2008}$ cho $7$ là $1.$
P/s: Rất lâu rồi mình không giải toán đồng dư nên không chắc bạn nhé.
tìm số dư của 2003^2005 chia cho 2007
---------------------2008^2009 ------------11
---------------------19^2008 --------------27
tìm hàng đơn vị của A : A= 17^2008 - 11^2008 - 3^2008
B = 17^25 + 24^4 - 13^21 . hãy chứng tỏ B chia hết cho 10
C = 8 ^102 - 2^ 102 . hãy chứng tỏ C chia hết cho 10
tìm chữ số thập phân thứ 2008 của phép chia số 2009 cho 11
tìm hàng đơn vị của A :
A= 17^2008 - 11^2008 - 3^2008
B = 17^25 + 24^4 - 13^21 . hãy chứng tỏ B chia hết cho 10
C = 8 ^102 - 2^ 102 . hãy chứng tỏ C chia hết cho 10
a) 172008 = (174)502 = (...1)502 = (....1)
112008 = (....1)
32008 = (34)502 = (...1)502 = (...1)
=> 172008 - 112008 - 32008 = (...1) - (...1) - (...1)
Hiệu 172008 - 112008 tận cùng là 0 => 172008 - 112008 - 32008 tận cùng là 9
b) 1725 = (174)6.17 = (...1)6.17 = (...7)
244 = (242)2 = (...6)2 = (...6)
1321 = (134)5.13 = (...1)5.13 = (...3)
=> B = 1725 - 244 - 1321 = (...7) + (...6) - (....3) = (....0) => B chia hết cho 10
c) Tương tự
BÀI 1: Tính gần đúng:
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{2008\sqrt{2007}+2007\sqrt{2008}}\)
BÀI 2: Tìm số dư của phép chia: \(3^{2^{2009}}\) cho 11.
BÀI 3: Cho hình thoi có chu vi là 37cm, tỉ lệ hai đường chéo là 2:3. Tính giá trị đúng diện tích S của hình thoi.
MỌI NGƯỜI GIÚP MÌNH NHÉ!!!!
1. Bài 1 e bấm máy
Nhấn Shift + log sẽ xuất hiện tổng sigma
e nhập như sau:
x = 1
cái ô trống ở trên nhập 2007
còn cái biểu thức trong dấu ngoặc đơn là \(\left(\frac{1}{\left(X+1\right)\sqrt{X}+X\sqrt{X+1}}\right)\)
Rồi bấm "="
Chờ máy hiện kq sẽ hơi lâu :)
kq: 0.9776839079
2.
-B1: Tìm số dư của \(2^{2009}\) cho 11 đc kq là 6
- B2: Tìm số dư của \(3^6\) cho 11 đc kq là 3
Vậy \(3^{2^{2009}}\) chia 11 dư 3
3. Gọi độ dài đường chéo ngắn hơn là x, thì độ dài đường chéo kia là 3/2 x
Cạnh hình thoi: 37 : 4 = 9.25 (cm)
Theo định lý Pytago
\(x^2+\left(\frac{3}{2}x\right)^2=9.25^2\)
Vào Shift Solve giải ra tìm đc \(x\approx5.130976815\)
Vậy \(S=\frac{1}{2}x.\frac{3}{2}x=\frac{4107}{208}\approx19.7451923076\left(cm^2\right)\)
2) cho S=1+3^2+3^4+....+3^2008
a) tim so du trong phep chia S chia 91
b) tim chu so tan cung cua S
a)Ta có: S=(1+3^2+3^4)+(3^6+3^8+3^10)+....+(3^2004+3^2006+3^2008)
S=91+3^6.(1+3^2+3^4)+....+3^2004.(1+3^2+3^4)=91.(1+3^6+...+3^2004) . Vì vậy S chia hết cho 91 và dư 0
b)Ta có:S=1+(3^2+3^4)+(3^6+3^8)+....+(3^2006+3^2008)=1+3^2.(1+3^2)+3^6.(1+3^2)+...+3^2006.(1+3^2)
S=1+3^2.10+3^6.10+....+3^2006.10=1+10.(3^2+3^6+...+3^2006). Vì vậy S có tận cùng là chữ số 1
Đúng rồi bạn nhé!