Cho phương trình 3x2 + ax + 3b + 27=0 ( x là ẩn; a, b là các số nguyên khác 0). Giả sử phương trình có các nghiệm đều nguyên. Chứng minh rằng a2 + b2 là hợp số
Câu 1. Phương trình nào sau đây là phương trình bậc nhất một ẩn?
A. 3x2 + 2x = 0 B. 5x - 2y = 0 C. x + 1 = 0 D. x2 = 0
Câu 1. Phương trình nào sau đây là phương trình bậc nhất một ẩn?
A. 3x2 + 2x = 0 B. 5x - 2y = 0 C. x + 1 = 0 D. x2 = 0
Câu 2. x = 1 là nghiệm của phương trình nào trong các phương trình dưới đây?
A. 2x - 3 = x + 2 B. x - 4 = 2x + 2 C. 3x + 2 = 4 - x D. 5x - 2 = 2x + 1
Câu 3. Phương trình vô nghiệm có tập nghiệm là?
A. S = f B. S = 0 C. S = {0} D. S = {f}
Câu 4. Điều kiện xác định của phương trình là?
A. x ≠ 2 và B. x ≠ -2 và C. x ≠ -2 và x ≠ 3 D. x ≠ 2 và
Câu 5. Cho AB = 3cm, CD = 40cm. Tỉ số của hai đoạn thẳng AB và CD bằng?
A. B. C. D.
Câu 6. Trong hình 1, biết , theo tính chất đường phân giác của tam giác thì tỉ lệ thức nào sau đây là đúng?
A. B.
C. D. (Hình 1)
Câu 7 . Trong hình 2, biết EF // BC. theo định lí Ta - lét thì tỉ lệ thức nào sau đây là đúng?
A. B.
C. D.
Câu 8. Biết và CD =10cm. Vậy độ dài đoạn thẳng AB là?
A. 4cm B. 50cm C. 25cm D. 20cm
Câu 9. Cho đồng dạng với theo tỷ số đồng dạng k = , chu vi bằng 60cm, chu vi bằng:
A. 30cm B.90cm C.60cm D.40cm
Câu 10. Cho đồng dạng với theo tỷ số đồng dạng k, đồng dạng với theo tỷ số đồng dạng m. đồng dạng với theo tỷ số đồng dạng
A. k.m B. C. D.
Cho phương trình: x2 + 3x + m – 1 = 0 (x là ẩn số).
a) Giải phương trình khi m = 3
b) Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn: x1(x14 – 1) + x2(32x24 –1) = 3
Cho phương trình: \(x^3+ax^2+bx-1=0\) ( với x là ẩn số). Tìm các giá trị của a,b để phương trình nhận x = -1 và x = \(1+\sqrt{2}\) là nghiệm.
Phương trình nào sau đây là phương trình bậc nhất một ẩn?
A. 15x ^ 2 + 4 = 3
B. 4y - 8 = 0
C. 3/7 * x - 2/9 = 0
D. 15/x + 3 = 0
Bậc nhất 1 ẩn
=> Loại đáp án A
Còn lại là phương trình bậc nhất 1 ẩn
Bài 3: Cho phương trình: x2 + mx – 2 = 0 (ẩn x) (m là tham số)
a/ Giải pt với m=3
b/ Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x12, x2 + x21x1 = 2014
\(a,m=3=>x^2+3x-2=0\)
\(\Delta=3^2-4\left(-2\right)=17>0\)
pt có 2 nghiệm pb \(\left[{}\begin{matrix}x1=\dfrac{-3+\sqrt{17}}{2}\\x2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
b,\(\Delta=m^2-4\left(-2\right)=m^2+8>0\)
=> pt đã cho luôn có 2 nghiệm phân biệt x1,x2 với mọi m
theo vi ét \(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=-2\end{matrix}\right.\)
có \(x1^2x2+x2^2x1=2014< =>x1x2\left(x1+x2\right)=2014\)
\(< =>-2\left(-m\right)=2014< =>m=1007\)
a) Thay m=3 vào phương trình, ta được:
\(x^2+3x-2=0\)
\(\Delta=3^2-4\cdot1\cdot\left(-2\right)=9+8=17\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{17}}{2}\\x_2=\dfrac{-3+\sqrt{17}}{2}\end{matrix}\right.\)
Cho phương trình \(x^2\)+3x+m-1=0 ( x là ẩn)
a) giải ptr vs m=3
b) Định m để phương trình có 2 nghiệm x1,x2 thỏa mãn:
\(x^2_1.\left(x_1^4-1\right)+x_2.\left(32x^4_2-1\right)=3\)
\(x^2+3x+m-1=0\left(1\right)\)
Thay \(m=3\) vào \(\left(1\right)\)
\(\Rightarrow x^2+3x+3-1=0\)
\(\Rightarrow x^2+3x+2=0\)
\(\Rightarrow x^2+x+2x+2=0\)
\(\Rightarrow x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
Vậy \(S=\left\{-2;-1\right\}\) khi \(m=3\)
Phương trình ax + b = 0 là phương trình bậc nhất một ẩn nếu
A. a = 0
B. b = 0
C. b ≠ 0
D. a ≠ 0
Phương trình dạng ax + b = 0, với a và b là hai số đã cho và a ≠ 0, được gọi là phương trình bậc nhất một ẩn.
Đáp án cần chọn là: D
Phương trình ax + b = 0 là phương trình bậc nhất một ẩn nếu:
A. a = 0
B. b = 0
C. b ≠ 0
D. a ≠ 0
Phương trình dạng ax + b = 0, với a và b là hai số đã cho và a ≠ 0, được gọi là phương trình bậc nhất một ẩn.
Đáp án cần chọn là: D