Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Eros Starfox

Cho phương trình \(x^2\)+3x+m-1=0  ( x là ẩn)
a) giải ptr vs m=3
b) Định m để phương trình có 2 nghiệm x1,x2 thỏa mãn:
\(x^2_1.\left(x_1^4-1\right)+x_2.\left(32x^4_2-1\right)=3\)

YangSu
20 tháng 1 2023 lúc 11:08

\(x^2+3x+m-1=0\left(1\right)\)

Thay \(m=3\) vào \(\left(1\right)\)

\(\Rightarrow x^2+3x+3-1=0\)

\(\Rightarrow x^2+3x+2=0\)

\(\Rightarrow x^2+x+2x+2=0\)

\(\Rightarrow x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)

Vậy \(S=\left\{-2;-1\right\}\) khi \(m=3\)


Các câu hỏi tương tự
Hải Yến Lê
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Thảo Nguyễn
Xem chi tiết
Draco
Xem chi tiết
Quý Công Tử *
Xem chi tiết
loancute
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Meliodas
Xem chi tiết