Cho hai phương trình:
\(x^3+3x^2+2x=0\) và \(\left(x+1\right)\left(x^2+2x+1+a\right)=0\) (với x là ẩn số). Tìm các giá trị của a để hai phương trình trên chỉ có một nghiệm chung duy nhất
Cho phương trình: (ẩn x):
x2 - ax - 2 = 0 (1) (a là tham số)
Gọi x1, x2 là 2 nghiệm của phương trình (1). Tìm giá trị của a để biểu thức:
N = x12 + (x1 + 2)(x2 + 2) + x22 có giá trị nhỏ nhất.
Cho phương trình: \(x^3+ax^2+bx-1=0\) (1)
Tìm các giá trị hữu tỷ a và b để phương trình (1) có nghiệm \(x=2-\sqrt{3}\)
Cho đa thức P(x) = x3 + ax2 + bx - 1
a) Xác định số hữu tỉ a, b để x = \(\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\) là nghiệm của phương trình
b) Với giá trị a, b vừa tìm được. Hãy tìm các nghiệm còn lại của phương trình P(x)
Cho phương trình ẩn x,m là tham số: x^2+(2m+1)×x+m^2+3m
a, Giải phương trình với m=-1
b, Tìm các giá trị của m để phương trình (1) có haii nghiệm và tích hai nghiệm của chúng bằng 4?
Cho phương trình x²-mx+m-1=0 (ẩn x, tham số m )
a)giải phương trình với m=3
b)chứng tỏ phường trình luôn có nghiệm với mọi giá trị m
c)gọi x₁ và x₂ là 2 nghiệm của phương trình . Tìm m để biểu thức A=x²₁ +x₂²-4x₁x₂ đạt giá trị nhỏ nhất. tìm giá trị nhỏ nhất đó
Cho a,b,c là 3 số phân biệt sao cho các phương trình: x2+ax+1=0 và x2+bx+c=0 có nghiệm chung. Đồng thời các phương trình x2+x+a=0 và x2+cx+b=0 cũng có nghiệm chung.
Tính giá trị của biểu thức P=a+b+c
Cho phương trình \(ax^2+bx+1=0\), với a,b là các số hữu tỉ. Tìm a,b biết x=\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình.
Tìm các số hữu ti a,b sao cho x=\(\frac{1+\sqrt{2}}{\sqrt{2}-1}\)là nghiệm của phương trình x3+ax2+bx+1=0