Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tranquang_t
Xem chi tiết
⭐Hannie⭐
21 tháng 12 2022 lúc 19:48

bạn tách ra từng ít câu 1 thôi ạ

Nguyễn Lê Phước Thịnh
22 tháng 12 2022 lúc 0:12

a: \(=5x\left(xy^2+3x+6y^2\right)\)

b: \(=\left(x-2\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x+3-x-2\right)=\left(x-2\right)\)

c: \(=\left(x-3\right)\left(x-4\right)\)

d: \(=x\left(x^2-2xy+y^2-9\right)\)

=x(x-y-3)(x-y+3)

e: \(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)

f: \(=\left(x-4\right)\left(x+3\right)\)

 

Đạt Trần
Xem chi tiết
Quang Official
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 6 2019 lúc 1:11

\(\left\{{}\begin{matrix}5x^2+5y^2-6xy=2\\2x^2+3x-2y^2-y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x^2+5y^2-6xy=2\\4x^2+6x-4y^2-2y=6\end{matrix}\right.\)

\(\Rightarrow9x^2+y^2-6xy+6x-2y+1=9\)

\(\Leftrightarrow\left(3x-y+1\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-y+1=3\\3x-y+1=-3\end{matrix}\right.\)

Đến đây chia 2 trường hợp và thế vào 1 trong 2 pt để giải

poppy Trang
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 11 2018 lúc 12:51

\(\left\{{}\begin{matrix}\left(x-y\right)\left(2x+3y\right)=12\\\left(x-y\right)\left(xy+6\right)=12\end{matrix}\right.\)

Trừ trên cho dưới:

\(\left(x-y\right)\left(2x+3y-xy-6\right)=0\Leftrightarrow\left(x-y\right)\left(x-3\right)\left(2-y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\x=3\\y=2\end{matrix}\right.\)

TH1: \(x=y\) thay vào pt đầu ta được \(0=12\) (vô nghiệm)

TH2: \(x=3\Rightarrow-3y^2+3x+6=0\Rightarrow\left[{}\begin{matrix}y=-1\\y=2\end{matrix}\right.\)

TH3: \(y=2\Rightarrow2x^2+2x-24=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)

Vậy pt có 3 cặp nghiệm \(\left(x;y\right)=\left(3;-1\right);\left(3;2\right);\left(-4;2\right)\)

nguyễn hoàng lân
Xem chi tiết
Hưng Việt Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 9 2021 lúc 13:52

\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11

 

 

Nguyễn Lê Phước Thịnh
5 tháng 9 2021 lúc 14:10

e: Ta có: \(x^2-6x+y^2+4y+2=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Dấu '=' xảy ra khi x=3 và y=-2

Hưng Việt Nguyễn
Xem chi tiết
Ngô Anh Huyền Trân
Xem chi tiết
poppy Trang
Xem chi tiết
Nguyễn Thành Trương
24 tháng 1 2020 lúc 11:06

Violympic toán 9

Khách vãng lai đã xóa
Nguyễn Thành Trương
24 tháng 1 2020 lúc 11:00

Hỏi đáp Toán

Khách vãng lai đã xóa
Nguyễn Thành Trương
24 tháng 1 2020 lúc 11:13

Violympic toán 9

Khách vãng lai đã xóa