cho x+y=4.tim GTLN cua bieu thuc A=(x-2).y+2017
cho x+y=4. tim gtln,gtnn cua bieu thuc: (x-2)y +2017
moi nguoi giup nhanh ho em voi,em can gap lam
tớ hết lượt kết bạn rồi nên bn kết bn vs tớ nha
tim gtln cua bieu thuc
B= 5x2-10x+(y+2017)-4
mọi người ơi ai giải đc bài này mk tích và kết bạn nha,mk cần gấp nên ai trả lời từ bây giờ đến 9h thì mk mới tích nhé:
cho x+y=4. tim gtln cua bieu thuc: (x-2)y+2017
Ta có x+y=4 => x= 4-y
Thay x=4-y vào biểu thức đã cho, có: [(4-y)-2]y +2017 = (2-y)y+2017 = 2y-y^2+2017 = -(y^2-2y+1)+2018 =
-(y-1)^2 + 2018( nếu bn ko hiểu chỗ này bn có thể hỏi lại)
Để -(y-1)^2 + 2018 lớn nhất thì -(y-1)^2 phải lớn nhất => -(y-1)^2 = 0 => -(y-1)^2 + 2018 = 2018
Vậy GTLN của biểu thức......... là 2018 khi y = 1 và x= 3
ko sao dau ban,du sao cg cam on ban nha
1/Tim GTLN cua bieu thuc \(M=\frac{4x^2}{x^4+1}\)
2/ Biet x+y =2. GTNN cua bieu thuc A=3x2+y2 là?
ban nao giai cho minh thi minh xin tang ban do 20 like.
2/ x+y=2 => y=2-x
\(\Rightarrow A=3x^2+y^2=3x^2+\left(2-x\right)^2=3x^2+4-4x+x^2=4x^2-4x+4\)
\(=\left(2x\right)^2-2.2x.1+1^2+3=\left(2x-1\right)^2+3\ge3\)
=>Amin=3 <=> (2x-1)2=0 <=> 2x-1=0 <=> 2x=1 <=> x=1/2 <=> y=3/2
1/ Với x=0 thì \(A=\frac{4x^2}{x^4+1}=0\)
Với \(x\ne0\) thì \(x^4+1\ge2x^2>0\) nên \(A=\frac{4x^2}{x^4+1}\le\frac{4x^2}{2x^2}=2\)
Vậy Amax=2 khi \(x^4+1=2x^2\Leftrightarrow\left(x^2-1\right)^2=0\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
<=> x=1 hoặc x=1
Bài 1
x=0 => M(0)=0
với x khác 0 :
\(\frac{1}{M}=\frac{x^4+1}{4x^2}=\frac{1}{4}\left(x^2+\frac{1}{x^2}\right)\ge\frac{1}{2}\\ \)
\(\Rightarrow M\le2\)
M(0)<2
=> GTLN của M =2
đạt được khi x^2 =1 => \(x=+-1\)
Đối với toán học gần đúng không thể cho là đúng
tim gtln cua bieu thuc P=\(\frac{\sqrt{x-2017}}{x}\) voi x>=2017
Vì \(x\ge2017\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2017}\ge0\\x\ge2017\end{matrix}\right.\)\(\Rightarrow MaxP=0\)
dấu"=" xảy ra khi x=2017
Tim x , y , z biet : x^2 +y^2 -2z+4y +5=0
Tim GTLN cua bieu thuc P = -x^2 +6x +1
\(P=-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)Vậy \(Max_P=10\) khi \(x-3=0\Rightarrow x=3\)
b, \(P=-x^2+6x+1=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-3x-3x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-10\ge-10\)
\(\Rightarrow-\left[\left(x-3\right)^2-10\right]\ge10\)
Hay \(P\ge10\) với mọi giá trị của \(x\in R\).
Để \(P=10\) thì \(-\left[\left(x-3\right)^2-10\right]=10\)
\(\Rightarrow\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy.....
Chúc bạn học tốt!!!
tim GTLN cua bieu thuc B= 2013-2014.x-x mu 2-y mu 2
1) Tim GTNN cua bieu thuc sau
a) M = x^2 + 4x + 9
b) N = x^2 - 20x +101
5) Tim GTLN cua bieu thuc sau
a) C = -y^2 + 6y -15
b) B = -x^2 + 9x - 12
c) D = 3x - x^2
Bài 1:
a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)
Dấu '=' xảy ra khi x=-2
b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)
Dấu '=' xảy ra khi x=10
cho x+y+z=3 tim gtln cua bieu thuc P=xy+yz+zx