\(P=-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)Vậy \(Max_P=10\) khi \(x-3=0\Rightarrow x=3\)
b, \(P=-x^2+6x+1=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-3x-3x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-10\ge-10\)
\(\Rightarrow-\left[\left(x-3\right)^2-10\right]\ge10\)
Hay \(P\ge10\) với mọi giá trị của \(x\in R\).
Để \(P=10\) thì \(-\left[\left(x-3\right)^2-10\right]=10\)
\(\Rightarrow\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy.....
Chúc bạn học tốt!!!