Cho x,y,z la cac so duong va x+y+z=1. Tim GTNN cua M=xy+yz+zx
Cho 3 số x,y,z thỏa mãn : x+y +z=3 . Tìm GTLN của P= xy+ yz+zx
Tim GTNN cua bieu thuc : B=x^2+xy+y^2-2x-3y+2019
Tìm GTNN , GTLn của biểu thức : A=\(\frac{8x+3}{4x^2+1}\)
Cho ba số x,y,z thỏa mãn \(x+y+z=3\).Tìm GTLN của P=xy+yz+zx
cho 3 số x,y,z khác 0 thỏa mãn 1/x+1/y+1/z=0 gia tri bieu thuc K=(xy/z^2+yz/x^2+xz/y^2-2)^2017 là
cho x,y,z ≥ 0 thỏa mãn x^2 +y^2 +z^2 =1. tìm GTNN, GTLN của T = x/1-yz + y/1-zx + z/1-xy
Cho x,y,z là các số thực không âm thỏa mãn:\(x^2+y^2+z^2=3\).Tìm GTLN P=xy+yz+zx+\(\frac{5}{x+y+z}\)
Cho x,y,z thỏa mãn \(0\le x,y,z\le1\). Tìm GTLN của biểu thức:
P= x2010+y8+z2018-xy-yz-zx
Cho x,y,z là các số thực dương. Tìm giá trị lớn nhất của:
\(Q=\frac{xy}{x^2+xy+yz}+\frac{yz}{y^2+yz+zx}+\frac{zx}{z^2+zx+xy}\)