Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Sang
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 5 2022 lúc 14:05

a: Ta có \(x^3-4x^2+x-n⋮x-4\)

\(\Leftrightarrow x^2\left(x-4\right)+x-4+n+4⋮x-4\)

=>n+4=0

hay n=-4

b: ta có: \(4x^3-2x^2+2x+n⋮2x+1\)

\(\Leftrightarrow4x^3+2x^2-4x^2-2x+4x+2+n-2⋮2x+1\)

=>n-2=0

hay n=2

c: \(\Leftrightarrow x^4-3x^3+3x^3-9x^2+6x^2-18x+21x-63-n+63⋮x-3\)

=>63-n=0

hay n=63

Nguyễn Quang Bách
Xem chi tiết

a, M(\(x\) )+N(\(x\)) = 3\(x^4\) - 2\(x\)3 + 5\(x^2\) - \(4x\)+ 1 + ( -3\(x^4\) + 2\(x^3\)- 3\(x^2\)+ 7\(x\) + 5)

M(\(x\)) + N(\(x\)) = ( 3\(x^4\)- 3\(x^4\))+( -2\(x^3\) + 2\(x^3\))+(5\(x^2\) - 3\(x^2\))+( 7\(x-4x\)) +(1+5)

M(\(x\)) + N(\(x\)) = 0 + 0 + 2\(x^2\) + 3\(x\) + 6

M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6

b, P(\(x\)) = M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6

P(-2) = 2.(-2)2 + 3.(-2) + 6 = 8 - 6 + 6 = 8 

Nguyễn Thu Huệ
Xem chi tiết
Trúc Giang
3 tháng 8 2020 lúc 16:07

Bài 1:

a) \(4x\left(3x-1\right)-2\left(3x+1\right)-\left(x+3\right)\)

\(=12x^2-4x-6x-2-x-3\)

\(=12x^2-11x-5\)

b) \(=\left(-2x^2-1xy+2y^2\right)\left(-1x^2y\right)\)

\(=\left[\left(-1x^2y\right)\left(-2x^2\right)\right]-\left[\left(-1x^2y\right).1xy\right]+\left[\left(-1x^2y\right).2y^2\right]\)

\(=\left(2x^4y\right)-\left(-1x^3y^2\right)+\left(-2x^2y^3\right)\)

\(=2x^4y+1x^3y^2-2x^2y^3\)

c) \(4x\left(3x^2-x\right)-\left(2x+3\right)^2\left(6x^2-3x+1\right)\)

\(=\left(4x.3x^2\right)-\left(4x.x\right)-\left[\left(2x\right)^2+2.2x.3+3^2\right]\left(6x^2-3x+1\right)\)

\(=12x^3-4x^2-\left(4x^2+12x+9\right)\left(6x^2-3x+1\right)\)

\(=12x^3-4x^2-\left[4x^2\left(6x^2-3x+1\right)+12x\left(6x^2-3x+1\right)+9\left(6x^2-3x+1\right)\right]\)

\(=12x^3-4x^2-\left[\left(24x^4-12x^3+4x^2\right)+\left(72x^3-36x^2+12x\right)+\left(36x^2-27x+9\right)\right]\)

\(=12x^3-4x^2-24x^4+12x^3-4x^2-72x^3+36x^2-12x-36x^2+27x-9\)

\(=-48x^3-8x^2-24x^4+15x-9\)

Nguyen
3 tháng 8 2020 lúc 14:18

Bài 1:

a) \(12x^2-11x-5\)

b,c,d tương tự.

Tạ Thu Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2020 lúc 20:45

a) Ta có: \(x^2+4x+3\)

\(=x^2+x+3x+3\)

\(=x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

b) Ta có: \(16x-5x^2-3\)

\(=-5x^2+16x-3\)

\(=-5x^2+15x+x-3\)

\(=-5x\left(x-3\right)+\left(x-3\right)\)

\(=\left(x-3\right)\left(-5x+1\right)\)

c) Ta có: \(2x^2+7x+5\)

\(=2x^2+2x+5x+5\)

\(=2x\left(x+1\right)+5\left(x+1\right)\)

\(=\left(x+1\right)\left(2x+5\right)\)

d) Ta có: \(2x^2+3x-5\)

\(=2x^2+5x-2x-5\)

\(=x\left(2x+5\right)-\left(2x+5\right)\)

\(=\left(2x+5\right)\left(x-1\right)\)

e) Ta có: \(x^3-3x^2+1-3x\)

\(=\left(x+1\right)\cdot\left(x^2-x+1\right)-3x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)

\(=\left(x+1\right)\left(x^2-4x+1\right)\)

f) Ta có: \(x^2-4x-5\)

\(=x^2-4x+4-9\)

\(=\left(x-2\right)^2-3^2\)

\(=\left(x-2-3\right)\left(x-2+3\right)\)

\(=\left(x-5\right)\left(x+1\right)\)

g) Ta có: \(\left(a^2+1\right)^2-4a^2\)

\(=\left(a^2+1\right)^2-\left(2a\right)^2\)

\(=\left(a^2+1-2a\right)\left(a^2+1+2a\right)\)

\(=\left(a-1\right)^2\cdot\left(a+1\right)^2\)

h) Ta có: \(x^3-3x^2-4x+12\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-4\right)\)

\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

i) Ta có: \(x^4+x^3+x+1\)

\(=x^3\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+1\right)\)

\(=\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)

k) Ta có: \(x^4-x^3-x^2+1\)

\(=x^3\left(x-1\right)-\left(x^2-1\right)\)

\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^3-x-1\right)\)

l) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)

\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)

\(=3x\left(x+2\right)\)

m) Ta có: \(x^4+4x^2-5\)

\(=x^4-x^2+5x^2-5\)

\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

Nguyễn Phương Linh
Xem chi tiết
TV Cuber
2 tháng 5 2022 lúc 13:29

a)\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)

\(P\left(x\right)=x^4+3x-\dfrac{1}{9}-x+3x^4+2x^2+8x-2x^3+2x^3+\dfrac{2}{3}+4x-4x^4-\dfrac{1}{3}\)

\(P\left(x\right)=2x^2+\dfrac{2}{9}+14x\)

 

 

 

Nguyễn Hoàng Việt
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Tạ Thu Hương
Xem chi tiết
HUYNH NHAT TUONG VY
25 tháng 7 2020 lúc 21:56

a/\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x+3\right)\left(x-3\right)=26\)

\(x^3+2^3\)\(-x\left(x^2-3^2\right)\)= 26

\(x^3+8-x^3+9x=26\)

\(9x=18\leftrightarrow x=2\)

Vậy x=2

b/\(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x-4\right)\left(x+4\right)=21\)

\(\Leftrightarrow x^3-3^3-x\left(x^2-4^2\right)=21\)

\(\Leftrightarrow x^3-9-x^3+16x=21\)

\(\Leftrightarrow16x=30\)

\(\Leftrightarrow x=\frac{15}{8}\)

Vậy \(x=\frac{15}{8}\)

c/\(\left(2x-1\right)\left(4x^2+2x+1\right)-4x\left(2x^2-3\right)=23\)

\(\left(2x\right)^3-1^3-4x\left(2x^2-3\right)=23\)

\(8x^3-1-8x^3+12x=23\)

\(12x=24\leftrightarrow x=2\)

Vậy x=2

Lê Trang
25 tháng 7 2020 lúc 22:15

a, (x + 2)(x2 - 2x + 4 ) - x(x + 3)(x - 3) = 26

<=> x3 + 8 - x(x2 - 9) = 26

<=> x3 + 8 - x3 + 9x = 26

<=> 9x - 18 = 0

<=> 9x = 18

<=> x = 2
b, (x - 3)(x2 + 3x + 9) - x(x - 4)(x + 4) = 21

<=> x3 - 27 - x(x2 - 16) = 21

<=> x3 - 27 - x3 + 16x = 21

<=> 16x - 48 = 0

<=> 16x = 48

<=> x = 3
c, (2x - 1)(4x2 + 2x + 1) - 4x(2x2 - 3) = 23

<=> 8x3 - 1 - 8x3 + 12x = 23

<=> 12x - 24 = 0

<=> 12x = 24

<=> x = 2

Phan Nghĩa
16 tháng 5 2021 lúc 20:06

\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x+3\right)\left(x-3\right)=26\)

\(< =>x^3-2x^2+4x+2x^2-4x+8-x\left(x^2-9\right)-26=0\)

\(< =>x^3+8-x^3+9x-26=0\)

\(< =>9x-18=0< =>x=2\)

Khách vãng lai đã xóa
nguyenthi my nhan
Xem chi tiết
Nguyễn Ngọc Quỳnh Châu
22 tháng 9 2019 lúc 22:15
https://i.imgur.com/NftyOSo.jpg
Nguyễn Ngọc Quỳnh Châu
22 tháng 9 2019 lúc 22:15
https://i.imgur.com/lNuNLji.jpg