a)\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(P\left(x\right)=x^4+3x-\dfrac{1}{9}-x+3x^4+2x^2+8x-2x^3+2x^3+\dfrac{2}{3}+4x-4x^4-\dfrac{1}{3}\)
\(P\left(x\right)=2x^2+\dfrac{2}{9}+14x\)
a)\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(P\left(x\right)=x^4+3x-\dfrac{1}{9}-x+3x^4+2x^2+8x-2x^3+2x^3+\dfrac{2}{3}+4x-4x^4-\dfrac{1}{3}\)
\(P\left(x\right)=2x^2+\dfrac{2}{9}+14x\)
Cho đa thức Q(x)=-3x^4+4x^3+2x^2+2/3-3x-2x^4-4x^3+8x^4+1+3x
a) Thu gọn và sắp xếp theo lũy thừa giảm dần của biến.
b) Chứng tỏ Q(x) không có nghiệm.
cho đa thức: M(x) = 5x^4 - 2x^3 + 5x^2 - 2x^4 - 4x+1
N(x) = -3x^4 - 3x^2 + 7x - 2x^3 + 5+4x^3 - 2x^2
a,thu gọn và sắp xếp đa thức trên theo lũy thừa giảm dần của biến
b, tính P(x) = M(x) + N(x); Q(x) = M(x) - N(x)
c, tìm nghiệm của đa thức P(x)
Bài 1. Cho hai đa thức
f (x)= -2x^4-3x^3+4x^4-x^2+5x+3x^2+5x^3+6 g (x)= x^4-x^3+x^2-5x-x^3-2x^2+3
a) Thu gọn và sắp xếp đa thức f (x) và g (x) theo lũy thừa giảm dần của biến; cho biết bậc, hệ
số cao nhất, hệ số tự do của mỗi đa thức.
b) Tìm các đa thức h (x) và k (x), biết
h (x)= f (x)+ g (x) k (x)= f (x)-2g (x)-4x^2
c) Tính giá trị của đa thức f (x) khi x là số nguyên, thỏa mãn k (x)= 0.
d) Tìm giá trị nhỏ nhất của đa thức h (x) CHỈ CẦN LÀM CÂU c,d THÔI, a,b ko cần phải làm
Bài 2. (2.0 điểm)
a) Tìm tất cả các giá trị nguyên của biến x để biểu thức sau nhận
giá trị nguyên M= 9x+5/3x-1
Bài 3. Cho hai đa thức P(x) = 2x3 – 2x + x2 – x 3 + 3x + 2 Q(x) = 3x3 -4x2 + 3x – 4x – 4x3 + 5x2 + 1 a) Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến b) Tính M(x) = P(x) + Q(x) ; N(x) = P(x) - Q(x) c) Chứng tỏ đa thức M(x) không có nghiệm
Bài 4. Cho hai đa thức: P(x) = (4x + 1 - x ^ 2 + 2x ^ 3) - (x ^ 4 + 3x - x ^ 3 - 2x ^ 2 - 5) Q(x) = 3x ^ 4 + 2x ^ 5 - 3x - 5x ^ 4 - x ^ 5 + x + 2x ^ 5 - 1 a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm, dần của biển. b) Tính P(x) + 20(x) 3P(x) + 0(x)
Cho hai đa thức: P(x)=x^2+4x+9-2x^3 Q(x) = 2x^3-3x+2x^2-9
a) Sắp xếp hai đa thức P(x), Q(x) theo lũy thừa giảm dần của biến
b) Tính M(x)= Q(x) + P(x)
c) Chứng tỏ x= -1/3 là nghiệm của M(x)
3 Cho hai đa thức P(x) = 2x3 – 2x + x2 – x3 + 3x + 2
và Q(x) = 3x3 -4x2 + 3x – 4x – 4x3 + 5x2 + 1
a. Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến .
b. Tính M(x) = P(x) + Q(x) ; N(x) = P(x) - Q(x) c. Chứng tỏ đa thức M(x) không có nghiệm .
bài 2 : cho hai đa thức
A(x)=1/4x mũ 3 + 11/3x mũ 2 - 6x - 2/3x mũ 2 + 7/4x mũ 3 +2x +3
B(x)= 2x mũ 3 + 2x mũ 2 - 3x + 9
a, thu gọn và sắp xếp đa thức A(x) theo lũy thừa giảm dần của biến
Cho hai đa thức P(x) = 2x3 - 2x + x2 - x3 + 3x + 2 và Q(x) = 3x3 - 4x2 + 3x - 4x - 4x3 + 5x2 + 1
A ) Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến
B ) Tính M(x) = P(x) + Q(x) ; N(x) = P(x) - Q(x)
C ) Chứng tỏ đa thức M(x) không có nghiệm