a) Cho tam giác ABC có góc A=90o và góc B lớn hơn góc C,vẽ AH vuông góc với BC tại H. Tia phân giác của góc HAC cắt BC tại D. Chứng minh góc BDA= góc BAD.
b) Tia phân giác của góc BAC cắt BC tại E, cho biết góc AEC - góc AEB=30o. Tính số đo góc ABC và góc CAD.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Cho tam giác ABC có góc B=70o;gócC=30o.Tia phân giác của góc A cắt BC tại D.KẺ AH vuông góc BC(H thuộc BC).Tính góc BAC? góc HAD? góc ADH ?
Cho tam giác ABC có góc A bằg 90độ và góc B lớn hơn góc C.Vẽ AH vuông góc BC tại H .Tia phân giác của góc HAC cắt BC tại D.
a)Chứng minh góc BAD bằg BAD
b)Tia phân giác của BAC cắt BC ở E cho biết AEC >AED 30 độ .Tính ABC và CAD
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC có góc B lớn hơn góc CVẽ tia phân giác AD
a) Chứng minh: góc ADC - góc ADB = góc B - góc C
b) Đường thẳng chứa tia phân giác góc ngoài của đỉnh A của tam giác ABC cắt BC tại E
Chứng minh: AEB =( góc B - góc C) / 2
cm dc câu a thui ^^
gọi góc ADB là góc D1 góc ADC là góc D2
xét ta.giác ABD có :góc B+D1+1/2 góc BAC=180 độ(1)
xét ta.giác ADC có :góc C+D2+1/2 góc BAC=180 độ(2)
trừ lần lượt 2 vế của đẳng thức 1 và 2 ta có : góc B+D1+1/2 góc BAC -(góc C+D2+1/2 góc BAC)=180-180
<=>góc B+D1- góc C - D2=0
<=>góc B - góc C= D2 - D1
Cho tam giác ABC có góc B lớn hơn góc CVẽ tia phân giác AD
a) Chứng minh: góc ADC - góc ADB = góc B - góc C
b) Đường thẳng chứa tia phân giác góc ngoài của đỉnh A của tam giác ABC cắt BC tại E
Chứng minh: AEB =( góc B - góc C) / 2
Tam giác ABC có cạnh BC lớn nhất. Trên cạnh BC lấy các điểm D và E sao cho BD = BA ; CE = CA. Tia phân giác của góc B cắt AE tại M; tia phân giác của góc C cắt AD tại N. Chứng minh rằng tia phân giác của góc BAC vuông góc với MN
Tam giác ABC có cạnh BC lớn nhất. Trên cạnh BC lấy các điểm D và E sao cho BD = BA ; CE = CA. Tia phân giác của góc B cắt AE tại M; tia phân giác của góc C cắt AD tại N. Chứng minh rằng tia phân giác của góc BAC vuông góc với MN
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
cho tam giác abc vuông tại a có bc=2ab. tia phân giác góc b cắt ac tại .a, chứng minh bd=cd b, tính góc b và góc c của tam giác abc
a: Kẻ DK\(\perp\)BC
Xét ΔBAD vuông tại A và ΔBKD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)
Do đó: ΔBAD=ΔBKD
=>BA=BK
mà \(BA=\dfrac{1}{2}BC\)
nên \(BK=\dfrac{1}{2}CB\)
=>K là trung điểm của BC
Xét ΔDBC có
DK là đường cao
DK là đường trung tuyến
Do đó: ΔDBC cân tại D
b: ΔDBC cân tại D
=>\(\widehat{DBC}=\widehat{DCB}\)
mà \(\widehat{DBC}=\dfrac{1}{2}\cdot\widehat{ABC}\)
nên \(\widehat{ACB}=\dfrac{1}{2}\cdot\widehat{ABC}\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\dfrac{1}{2}\cdot\widehat{ABC}+\widehat{ABC}=90^0\)
=>\(\dfrac{3}{2}\cdot\widehat{ABC}=90^0\)
=>\(\widehat{ABC}=90^0:\dfrac{3}{2}=90^0\cdot\dfrac{2}{3}=60^0\)
\(\widehat{ACB}=\dfrac{1}{2}\cdot\widehat{ABC}=\dfrac{1}{2}\cdot60^0=30^0\)