Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Anh Trí
Xem chi tiết
Nguyễn Xuân Toàn
19 tháng 11 2017 lúc 6:55

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Bùi Cẩm Thảo Hiền
Xem chi tiết
Phong Lãnh
Xem chi tiết
Nguyễn Duy Nam Khánh
Xem chi tiết
Rin cute
Xem chi tiết
Nguyễn huy hoàng
28 tháng 7 2016 lúc 21:26

cm dc câu a thui ^^

gọi góc ADB là góc D1 góc ADC là góc D2 

xét ta.giác ABD có :góc B+D1+1/2 góc BAC=180 độ(1)

xét ta.giác ADC có :góc C+D2+1/2 góc BAC=180 độ(2)

trừ lần lượt 2 vế của đẳng thức 1 và 2 ta có : góc B+D1+1/2 góc BAC -(góc C+D2+1/2 góc BAC)=180-180

                                                                  <=>góc B+D1- góc C - D2=0

                                                                   <=>góc B - góc C= D2 - D1

Mai Ngọc Sơn
2 tháng 10 2016 lúc 9:07

iyuoyuoyoluyo ijo78ok,

Trịnh Đình Minh Tuấn
6 tháng 12 2018 lúc 22:04

Cho tam giác ABC có góc B lớn hơn góc CVẽ tia phân giác AD

a) Chứng minh: góc ADC - góc ADB = góc B - góc C

b) Đường thẳng chứa tia phân giác góc ngoài của đỉnh A của tam giác ABC cắt BC tại E

Chứng minh: AEB =( góc B - góc C) / 2

Đào Thu Huyền
Xem chi tiết
Đào Thu Huyền
Xem chi tiết
Phương Uyên Võ Ngọc
Xem chi tiết
Đỗ Thị Dung
28 tháng 4 2019 lúc 22:14

bài 1 đề bài có sai ko?

Phương Uyên Võ Ngọc
29 tháng 4 2019 lúc 22:08

Đề đúng nha bạn

IS
22 tháng 2 2020 lúc 20:03

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
Phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2023 lúc 20:19

a: Kẻ DK\(\perp\)BC

Xét ΔBAD vuông tại A và ΔBKD vuông tại K có

BD chung

\(\widehat{ABD}=\widehat{KBD}\)

Do đó: ΔBAD=ΔBKD

=>BA=BK

mà \(BA=\dfrac{1}{2}BC\)

nên \(BK=\dfrac{1}{2}CB\)

=>K là trung điểm của BC

Xét ΔDBC có

DK là đường cao

DK là đường trung tuyến

Do đó: ΔDBC cân tại D

b: ΔDBC cân tại D

=>\(\widehat{DBC}=\widehat{DCB}\)

mà \(\widehat{DBC}=\dfrac{1}{2}\cdot\widehat{ABC}\)

nên \(\widehat{ACB}=\dfrac{1}{2}\cdot\widehat{ABC}\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\dfrac{1}{2}\cdot\widehat{ABC}+\widehat{ABC}=90^0\)

=>\(\dfrac{3}{2}\cdot\widehat{ABC}=90^0\)

=>\(\widehat{ABC}=90^0:\dfrac{3}{2}=90^0\cdot\dfrac{2}{3}=60^0\)

\(\widehat{ACB}=\dfrac{1}{2}\cdot\widehat{ABC}=\dfrac{1}{2}\cdot60^0=30^0\)