Cho tam giác ABC co AB=AC ,góc B=góc C gọi M là trung điểm BC.CMR :AM vuông góc BC
Cho tam giác ABC có AB=BC. Gọi M là trung điểm của BC.CMR:
a) tam giác ABM=tam giác ACM
b) góc AMB = góc AMC
c) AM vuông góc BC tại M
Cho tam giác ABC có AB=AC. gỌI M là trung điểm của BC.CMR
AM vuông góc BC
Tam giác ABM và tam giác ACM có :
AB=AC( GT)
BM=BC(M là trung điểm của BC)
chung cạnh AM
Do đó , tam giác ABM = tam giác ACM
=> AMB=AMC( hai góc tương ứng)
Ta có : AMB+AMC=180\(^0\)
mà AMB=AMC=> AMB=90\(^0\)và \(AMC=90^0\)
Vậy AM vuông hóc với BC
cho tam giác abc nhọn (ab < ac ) gọi m là trung điểm của bc . trên tia am lấy điểm n sao cho m là trung điểm của an
a, chứng minh tam giác am b = tam giác nmc
b, vẽ cd vuông góc với ab ( d thuộc ab ) so sánh góc abc và góc bcn . tính góc dcn
c, vẽ ah vuoogn góc với bc ( h thuộc bc ) trên tia đối của tia ha lấy điểm i sao cho hi = ha . chứng minh bi = cn
a) Xét ΔAMB và ΔNMC có
MA=MN(gt)
\(\widehat{AMB}=\widehat{NMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔNMC(c-g-c)
b) Ta có: ΔAMB=ΔNMC(cmt)
nên \(\widehat{ABM}=\widehat{NCM}\)(hai góc tương ứng)
hay \(\widehat{ABC}=\widehat{BCN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//NC(Dấu hiệu nhận biết hai đường thẳng song song)
mà CD⊥AB(gt)
nên CD⊥CN
hay \(\widehat{DCN}=90^0\)
c) Xét ΔABH vuông tại H và ΔIBH vuông tại H có
BH chung
HA=HI(gt)
Do đó: ΔABH=ΔIBH(hai cạnh góc vuông)
Suy ra: AB=IB(hai cạnh tương ứng)
mà AB=CN(ΔAMB=ΔNMC)
nên IB=CN(đpcm)
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC Kẻ MH vuông góc với AB tại H, MK vuông góc với AC tại K Chứng minh:
a) tam giác AMB = tam giác AMC b) AM vuông góc với BC c)HA = KA; HB = AC d) HK song song với BC
Giúp mình với, mik đng cần gấp. Cảm ơn các bạn nhìu!!!
hình thì bạn tự vẽ nha !
a) xét ΔAMB và ΔAMC, ta có :
AB = AC (gt)
MB = MC (vì M là trung điểm của cạnh BC)
AM là cạnh chung
⇒ ΔAMB = ΔAMC (c.c.c)
b) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
ta có : \(\widehat{AMB}+\widehat{AMC}=180^0\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
⇒ AM vuông góc với BC
c) vì ΔAMB = ΔAMC nên ⇒ \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
xét ΔAHM và ΔAKM, ta có :
AM là cạnh chung
\(\widehat{HAM}=\widehat{KAM}\) (cmt)
⇒ ΔAHM = ΔAKM (cạnh góc vuông và góc nhọn kề)
⇒ HA = KA (2 cạnh tương ứng)
HB không thể nào bằng AC được nha, có thể đề sai
d) vì HA = KA nên ⇒ ΔHAK là tam giác cân
trong ΔAHK, ta có : \(\widehat{AHK}=\left(180^0-\widehat{A}\right)\div2\) (1)
trong ΔABC, ta có : \(\widehat{ABC}=\left(180^0-\widehat{A}\right)\div2\) (2)
từ (1) và (2) ta suy ra \(\widehat{AHK}=\widehat{ABC}\), mà 2 góc này ở vị trí đồng vị, => HK // BC
Chứng minh:
a) Xét hai ∆AMB và ∆AMC có:
AB = AC (GT)
MB = MB (M là trung điểm của BC)
AM là cạnh chung
Vậy ∆AMB = ∆AMC(c.c.c)
b) Có ∆AMB = ∆AMC(theo a)
⇒ Góc AMB = Góc AMC(2 góc tương ứng)
mà góc AMB + AMC = 180° (2 góc kề bù)
⇒ Góc AMB = Góc AMC = 90°
⇒ AM ∟ BC
c) ΔABC có:
AB = AC(GT)
⇒ ΔABC cân tại A
⇒ Góc B = Góc C
Có MH∟AB tại H ⇒ Góc MHB = 90°
Có MK∟AC tại K ⇒ Góc MKC = 90°
Xét hai ΔBHM và ΔCKM có:
Góc B = Góc C(ΔABC cân tại A)
MB = MC(M là trung điểm của BC)
Góc MHB = Góc MKC = 90°
Vậy ΔBHM = ΔCKM(g.c.g)
⇒ HB = KC(2 cạnh tương ứng)
Có HB + HA = AB
⇒ HA = AB - HB
Có KC + KA = AC
⇒ KA = AC - KC
mà AB = AC(GT)
HB = KC(2 cạnh tương ứng)
⇒ HA = KA (2 cạnh tương ứng)
Bạn còn cách nào giải phần d mà ko dùng đến tam giác cân ko
cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC. Chứng minh rằng: a) Góc B= góc C, b)AM vuông góc với BC
a) Xét \(\Delta ABC\)có
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta ABC\)cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}\)
b) Vì M là trung điểm của BC
=> AM là đường trung tuyến của \(\Delta ABC\)
Trong tam giác cân đường trung tuyến cũng là đường cao
\(\Rightarrow AM\perp BC\)
a) Xét \(\Delta ABC\)có : AB = BC ( gt )
\(\Rightarrow\Delta ABC\)cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}\)
b) Xét \(\Delta ABM\)và \(\Delta ACM\)có :
\(AB=AC\left(gt\right)\)
\(BM=MC\)( M là trung điểm của BC )
AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
\(\Rightarrow\widehat{M_1}=\widehat{M_2}\)( 2 góc tương ứng )
mà \(\widehat{M_1}+\widehat{M_2}=180^o\)( kề bù )
\(\Rightarrow\widehat{M_1}=90^o\)
\(\Rightarrow AM\perp BC\)
Cho tam giác ABC có AB = AC. AM vuông góc với BC tại M. Chứng minh
a) AM là tia phân giác góc BAC.
b) M là trung điểm của BC.
c) AM là đường trung trực của BC.
d) Góc B = góc C.
Bài 5: Cho tam giác ABC có góc B = góc C. Chứng minh AB = AC
b: Ta có: ΔBAC cân tại A
mà AM là đường cao
nên M là trung điểm của BC
Cho tam giác ABC có AB = AC, gọi M là trung điểm của BC
a/ CMR góc B = góc C
b/CMR: AM là tia phân giác của góc BAC
c/CMR: AM vuông góc với BC
Cho tam giác ABC có AB = AC, gọi M là trung điểm của BC
a/ CMR góc B = góc C
b/CMR: AM là tia phân giác của góc BAC
c/CMR: AM vuông góc với BC
Xét tam giác AMB và tam giác AMC có:
AB=AC(giả thiết)
AM chung
MB=MC(M là trung điểm BC)
Từ 3 điều trên, ta có tam giác AMB=tam giác AMC=>góc B=góc C
b/ Ta có tam giác AMB=tam giác AMC=>góc BAM=góc CAM=>AM là tia phân giác của góc BAC
c/ Ta có tam giác AMB=tam giác AMC=>góc AMB=góc AMC mà tổng 2 góc này bằng 180 độ=>góc AMB=góc AMC=>AM vuông góc với BC
Cho tam giác ABC có AB = AC, gọi M là trung điểm của BC
a/ CMR góc B = góc C
b/CMR: AM là tia phân giác của góc BAC
c/CMR: AM vuông góc với BC