cho tam giác abc nhọn (ab < ac ) gọi m là trung điểm của bc . trên tia am lấy điểm n sao cho m là trung điểm của an
a, chứng minh tam giác am b = tam giác nmc
b, vẽ cd vuông góc với ab ( d thuộc ab ) so sánh góc abc và góc bcn . tính góc dcn
c, vẽ ah vuoogn góc với bc ( h thuộc bc ) trên tia đối của tia ha lấy điểm i sao cho hi = ha . chứng minh bi = cn
a) Xét ΔAMB và ΔNMC có
MA=MN(gt)
\(\widehat{AMB}=\widehat{NMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔNMC(c-g-c)
b) Ta có: ΔAMB=ΔNMC(cmt)
nên \(\widehat{ABM}=\widehat{NCM}\)(hai góc tương ứng)
hay \(\widehat{ABC}=\widehat{BCN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//NC(Dấu hiệu nhận biết hai đường thẳng song song)
mà CD⊥AB(gt)
nên CD⊥CN
hay \(\widehat{DCN}=90^0\)
c) Xét ΔABH vuông tại H và ΔIBH vuông tại H có
BH chung
HA=HI(gt)
Do đó: ΔABH=ΔIBH(hai cạnh góc vuông)
Suy ra: AB=IB(hai cạnh tương ứng)
mà AB=CN(ΔAMB=ΔNMC)
nên IB=CN(đpcm)