Cho tam giác ABC vuông tại A có AB=21cm, AC=28cm, đường phân giác AD.
Tính độ dài cạnh AD
Cho tam giác ABC vuông tại A,AB=21cm,AC=28cm,đường phân giác AD.Tính khoảng cách từ D đến AC
Bài 4. Cho tam giác ABC vuông tại A, biết AB = 21cm, AC = 28cm, đường phân giác AD. Đường thẳng qua D và song song với AB cắt AC tại E. a) Tính độ dài BD, CD, ED. b) Đường thẳng vuông góc với AD tại A cắt BE kéo dài tại F. Tính độ dài BF.
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
BC2=AB2+AC2=212+282=1225BC2=AB2+AC2=212+282=1225
Suy ra: BC = 35 (cm)
Vì AD là đường phân giác của ∠∠(BAC) nên:
(t/chất đường phân giác)
Suy ra:
Hay
Suy ra:
Vậy DC = BC – BD = 35 – 15 = 20cm
Trong ΔABC ta có: DE // AB
Suy ra: (Hệ quả định lí Ta-lét)
Suy ra:
a: BC=35(cm)
Xét ΔABC có AD là đường phân giác
nên BD/AB=CD/AC
hay BD/21=CD/28
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{35}{49}=\dfrac{5}{7}\)
Do đó: BD=15(cm); CD=20(cm)
Xét ΔABC có ED//AB
nên ED/AB=CD/CB
=>ED/21=20/35=4/7
=>ED=12(cm)
Cho ΔABC vuông tại A, đường cao AH và đường phân giác AD (H và D thuộc BC). Biết AB = 21cm, AC = 28cm.
a) Tính diện tích tam giác ABC và chứng minh AH . BC = AB . AC
b) Tính độ dài BC, DB và DC.
c) Đường phân giác BK của ABC cắt AD tại I (K thuộc AC), tính tỉ số BI/IK . Gọi G là trọng tâm ΔABC, chứng minh IG //AC.
a: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot21\cdot28=294\left(cm^2\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\)
mà \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)
nên \(AH\cdot BC=AB\cdot AC\)
b: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=21^2+28^2=1225\)
=>\(BC=\sqrt{1225}=35\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
=>\(\dfrac{DB}{15}=\dfrac{DC}{20}\)
=>\(\dfrac{DB}{3}=\dfrac{DC}{4}\)
mà DB+DC=BC=35cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{35}{7}=5\)
=>\(DB=5\cdot3=15\left(cm\right);DC=4\cdot5=20\left(cm\right)\)
Cho tam giác ABC vuông tại A, biết AB = 21cm, AC= 28cm, phân giác AD( D thuộc BC). Đường thẳng qua D song song với BA cắt CA tại E. Tính độ dài DB, DC, ED.
Cho tam giác ABC vuông tại A, biết AB = 21cm, AC= 28cm, phân giác
AD( D thuộc BC). Đường thẳng qua D song song với BA cắt CA tại E. Tính độ dài
DB, DC, ED.
a, xét tam giác ABC vuông tại A (gt)
=>AB^2 + AC^2 = BC^2 (đl Pytago)
có AB = 21; AC = 28 (gt)
=> BC^2 = 21^2 + 28^2
=> BC^2 =1225
=> BC = 35 do BC > 0
xét tam giác ABC có AD là pg (gt)
=> BD/AB = DC/AC (tc)
=> (BD + DC)/(AB + AC) = BD/AB = DC/AC
có : AB = 21; AC = 28; BC = BD + DC = 35
=> 35/49 = BD/21 = DC/28
=> DB = 15 và DC = 20
xét tam giác ABC có DE // AB
=> ED/AB = CD/CB (hệ quả)
thay số vào tính được ED
ED bằng bao nhiêu vậy bạn
Cho tam giác ABC vuông tại A, biết AB=21cm AC=28cm, phân giác AD (D E BC) a) Tính độ dài DB, DC b) Gọi e là hình chiếu của D trên AC. Hãy tính độ dài DE, EC; c) Gọi I là giao điểm các đường phân giác và G là trọng tâm của tam giác ABC chứng minh rằng IG // AC
a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)
AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=35/7=5
=>DB=15cm; DC=20cm
b: Xét ΔCAB có DE//AB
nên DE/AB=CD/CB=CE/CA
=>CE/28=DE/21=20/35=4/7
=>CE=16cm; DE=12cm
Cho ΔABC vuông tại A, đường cao AH và đường phân giác AD (H và D thuộc BC). Biết AB = 21cm, AC = 28cm.
a) Tính diện tích tam giác ABC và chứng minh AH . BC = AB . AC
b) Tính độ dài BC, DB và DC.
Trong ΔABC, ta có: AD là đường phân giác của (BAC)
Suy ra: (tính chất đường phân giác)
Mà AB = 21 (cm); AC = 28 (cm)
Nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{21}{28}=\dfrac{3}{4}\)
Suy ra:
(tính chất tỉ lệ thức)Suy ra:
Cho tam giác ABC vuông tại A có cạnh AB = 21cm, AC = 28cm, vẽ đường cao AH.
a/ Chứng minh tam giác ABC đồng dạng tam giác HBA. Tính độ dài AH
b/ Chứng minh AH bình phương = HB.HC
c/ Trên cạnh AC và cạnh AB lấy điểm M và N sao cho CM = 1/3 AC, AN = 1/3 AB. Chứng minh góc CMH = góc ANH
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
Xét ΔABC vuông tại A có AH là đường cao
nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
hay AH=16,8(cm)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
Cho tam giác ABC vuông tại A có đường phân giác là AD. Biết AB = 21cm, AC = 28cm. Đường thẳng qua D song song với AB cắt ac tại E.
a) Tính CD, BD, ED
b) Đường thẳng vuông góc với AD tại A cắt BC kéo dài tại E. Tính BF
Câu b là kéo dài tại F ạ,tại mk ghi nhầm:)))
#hoa học trò# chưa bn ơi,bạn biết làm bài này ko,bạn giúp mình với