\(\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
\(\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
\(\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
=\(\sqrt{21-2\sqrt{54}}+\sqrt{6+2\sqrt{18}+3}-\sqrt{4\cdot\left(6+3\sqrt{3}\right)}\)
=\(\sqrt{18-2\sqrt{54}+3}+\sqrt{6+2\sqrt{18}+3}-\sqrt{24+12\sqrt{3}}\)
=\(\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{6}+\sqrt{3}\right)^2}-\sqrt{24+2\sqrt{108}}\)
=\(\left|\sqrt{18}-\sqrt{3}\right|+\left|\sqrt{6}+\sqrt{3}\right|-\sqrt{\sqrt{18}+2\sqrt{108}+\sqrt{6}}\)
=\(\left|\sqrt{18}-\sqrt{3}\right|+\left|\sqrt{6}+\sqrt{3}\right|-\sqrt{\left(\sqrt{18}+\sqrt{6}\right)^2}\)
=\(\left|\sqrt{18}-\sqrt{3}\right|+\left|\sqrt{6}+\sqrt{3}\right|-\left|\sqrt{18}-\sqrt{6}\right|\)
=\(\sqrt{18}-\sqrt{3}+\sqrt{6}+\sqrt{3}-\sqrt{18}-\sqrt{6}\)
= 0
Hic câu dưới bị giải nhầm nha bạn :<
\(\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
=\(\sqrt{21-2\sqrt{54}}+\sqrt{6+2\sqrt{18}+3}-\sqrt{24+12\sqrt{3}}\)
=\(\sqrt{18-2\sqrt{54}+3}+\sqrt{6+2\sqrt{18}+3}-\sqrt{24+2\sqrt{108}}\)
=\(\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{6}+\sqrt{3}\right)^2}-\sqrt{18+2\sqrt{108}+6}\)
=\(\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{6}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{18}+\sqrt{6}\right)^2}\)
=\(\left|\sqrt{18}-\sqrt{3}\right|+\left|\sqrt{6}+\sqrt{3}\right|-\left|\sqrt{18}+\sqrt{6}\right|\)
=\(\sqrt{18}-\sqrt{3}+\sqrt{6}+\sqrt{3}-\sqrt{18}-\sqrt{6}\)
=0
\(\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
\(\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
\(=3\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{6}-3\sqrt{2}-\sqrt{6}=0\)
Tính:
\(\sqrt{21-6\sqrt{6}+\sqrt{9+2\sqrt{18}}}-2\sqrt{6+3\sqrt{3}}\)
Rút gọn
a) \(\sqrt{6+3\sqrt{3}+\sqrt{6-3\sqrt{3}}}\)
b) \(\dfrac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
c) \(\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
a)Đặt A=.......
Bình phương 2 vế rồi làm binh thường
Tính:
\(\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6-3\sqrt{8}}\)
a. \(\sqrt{21+6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
b. \(\sqrt{6+2\sqrt{2\sqrt{3-\sqrt{4+2\sqrt{3}}}}}\)
c. \(\sqrt{4+\sqrt{15}}-\sqrt{7-3\sqrt{5}}\)
d.\(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
e. \(\sqrt{\frac{9}{4}-\sqrt{2}}+\sqrt{2}\)
Tính
1) \(\sqrt{18}.\sqrt{2}\)
2) \(\sqrt{15^2-9^2}\)
3) \(\sqrt{46-6\sqrt{5}}-\sqrt{46+6\sqrt{5}}\)
4)\(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)
5) \(\left(2+\sqrt{5}\right).\sqrt{9-4\sqrt{5}}\)
6)\(\left(3-\sqrt{2}\right).\sqrt{7+4\sqrt{3}}\)
7)\(\left(\sqrt{3}+\sqrt{5}\right).\sqrt{7-2\sqrt{10}}\)
8)\(\left(\sqrt{6}+\sqrt{10}\right).\sqrt{4-\sqrt{15}}\)
9) \(\sqrt{2}.\left(\sqrt{8}-\sqrt{32}+3\sqrt{18}\right)\)
10) \(\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\)
11) \(\sqrt{3}-\sqrt{2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
12) \(\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right).\sqrt{2}+2\sqrt{5}\)
1: \(=\sqrt{36}=6\)
2: \(=\sqrt{\left(15-9\right)\left(15+9\right)}=\sqrt{24\cdot6}=12\)
3: \(=3\sqrt{5}-1-3\sqrt{5}-1=-2\)
4: \(=3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
5: \(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)=5-4=1\)
Tính:
1) \(\sqrt{4-2\sqrt{3}}\)
2) \(\sqrt{5+2\sqrt{6}}\)
3) \(\sqrt{7-2\sqrt{10}}\)
4) \(\sqrt{14-6\sqrt{6}}\)
5) \(\sqrt{8+2\sqrt{15}}\)
6) \(\sqrt{10-2\sqrt{21}}\)
7) \(\sqrt{11+2\sqrt{18}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)
3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)
5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)
7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)
Tính :
a) \(\dfrac{5+2\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}}-\left(\sqrt{5}+\sqrt{3}\right)\)
b) \(\left(\dfrac{1}{2-\sqrt{5}}+\dfrac{2}{\sqrt{5}+\sqrt{3}}\right):\dfrac{1}{\sqrt{21+12\sqrt{3}}}\)
c) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}\)
d) \(\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
e) \(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
f) \(\dfrac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\left(\sqrt{5-2\sqrt{6}}\right)}{9\sqrt{3}-11\sqrt{2}}\)
g) \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)-\dfrac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)
b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)
\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)
\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)
c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)