Tính
1) \(\sqrt{18}.\sqrt{2}\)
2) \(\sqrt{15^2-9^2}\)
3) \(\sqrt{46-6\sqrt{5}}-\sqrt{46+6\sqrt{5}}\)
4)\(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)
5) \(\left(2+\sqrt{5}\right).\sqrt{9-4\sqrt{5}}\)
6)\(\left(3-\sqrt{2}\right).\sqrt{7+4\sqrt{3}}\)
7)\(\left(\sqrt{3}+\sqrt{5}\right).\sqrt{7-2\sqrt{10}}\)
8)\(\left(\sqrt{6}+\sqrt{10}\right).\sqrt{4-\sqrt{15}}\)
9) \(\sqrt{2}.\left(\sqrt{8}-\sqrt{32}+3\sqrt{18}\right)\)
10) \(\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\)
11) \(\sqrt{3}-\sqrt{2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
12) \(\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right).\sqrt{2}+2\sqrt{5}\)
Rút gọn các biểu thức sau :
a,\(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b,\(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c,\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d, D=\(\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\) \(\left(vớix\ne y,x\ne-y\right)\)
b1. Rút gọn
a)\(\frac{5\sqrt{6}+6\sqrt{5}}{\sqrt{5}+\sqrt{6}}\)
b) \(\frac{2\sqrt{7}-4\sqrt{3}}{3\sqrt{35}-6\sqrt{15}}\)
c) \(\frac{12\sqrt{10}-16\sqrt{14}}{6\sqrt{5}-8\sqrt{7}}\)
d) \(\frac{6\sqrt{6}-27}{2\sqrt{2}-3\sqrt{3}}\)
e) \(\frac{-4\sqrt{2}+3\sqrt{5}}{-2\sqrt{10}}\)
a)\(\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
b) \(\sqrt{7+4\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
c) \(\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
d)\(\sqrt{7+2\sqrt{10}}-\sqrt{3-2\sqrt{2}}\)
Rút gon các biểu thức:
a)\(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
b)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
c)\(\sqrt{9\left(3-a\right)^2}vớia>3\)
d)\(\sqrt{a^2.\left(a-2\right)^2}vớia< 0\)
Rút gọn biểu thức:
a) \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
b) \(\sqrt{6-2\sqrt{3+\sqrt{13+4\sqrt{3}}}}\)
c) \(\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
d) \(\sqrt{23-6\sqrt{10+4\sqrt{3-2\sqrt{2}}}}\)
Rút gọn:
a)\(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b)\(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c)\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d)\(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}\)
Rút gọn biểu thức
a. \(\left(2\sqrt{5}-\sqrt{7}\right)\left(2\sqrt{5}+\sqrt{7}\right)\)
b.\(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)\)
c. \(\sqrt{9+4\sqrt{5}}\)
d. \(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}\)
e. \(\sqrt{55-6\sqrt{6}}\)
f. \(\sqrt{21-6\sqrt{6}}\)
BT: Tính
a, \(\sqrt{13}.\sqrt{52}\)
b, \(\sqrt{12,5}.\sqrt{0,2}.\sqrt{0,1}\)
c, \(\sqrt{12}-\sqrt{27}+\sqrt{3}\)
d, \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
e, \(\left(\sqrt{12}-2\sqrt{75}\right).\sqrt{3}\)
f, \(\sqrt{3}.\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right)\)
g, \(\left(\sqrt{18}+\sqrt{32}-\sqrt{50}\right).\sqrt{2}\)
h, \(\sqrt{50}-\sqrt{18}+\sqrt{200}-\sqrt{162}\)
k, \(\frac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
l, \(\frac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
m, \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
n, \(\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}\)
p, \(\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)
q, \(2\sqrt{3}\left(\sqrt{2}-3\right)+\left(2-\sqrt{3}\right)^2+6\sqrt{3}\)