Bài 1 : Rút gọn biểu thức sau :
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Bài 2 : Chứng minh đẳng thức sau :
\(\sqrt{8+2\sqrt{10+2\sqrt{5}}}.\sqrt{8-2\sqrt{10+2\sqrt{5}}}=2\sqrt{5}-2\)
Bài 3 : Cho biểu thức E = \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\)
a) Rút gọn biẻu thức E
b) Tính giá trị của E khi x = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Rút gon các biểu thức:
a)\(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
b)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
c)\(\sqrt{9\left(3-a\right)^2}vớia>3\)
d)\(\sqrt{a^2.\left(a-2\right)^2}vớia< 0\)
a. \(\sqrt{21+6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
b. \(\sqrt{6+2\sqrt{2\sqrt{3-\sqrt{4+2\sqrt{3}}}}}\)
c. \(\sqrt{4+\sqrt{15}}-\sqrt{7-3\sqrt{5}}\)
d.\(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
e. \(\sqrt{\frac{9}{4}-\sqrt{2}}+\sqrt{2}\)
a)\(\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
b) \(\sqrt{7+4\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
c) \(\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
d)\(\sqrt{7+2\sqrt{10}}-\sqrt{3-2\sqrt{2}}\)
1. Rút gọn:
\(\sqrt{8-2\sqrt{7}}-\sqrt{9-2\sqrt{14}}\)
\(\sqrt{5-2\sqrt{6}}-\sqrt{11-4\sqrt{6}}\)
2. Tính:
a. 2 + \(\sqrt{17-4\sqrt{9}+4\sqrt{5}}\)
b. \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7}+4\sqrt{3}}}\)
c. \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
3. CM:
a. \(\frac{x+y}{2}\) >= \(\sqrt{xy}\) với x, y >= 0
b. \(\frac{x}{y}+\frac{y}{x}\) >= 2 với x,y >= 0
c. a + b + 1 >= \(\sqrt{ab}\) + \(\sqrt{a}+\sqrt{b}\) với a,b >= 0.
BT: Tính
a, \(\sqrt{13}.\sqrt{52}\)
b, \(\sqrt{12,5}.\sqrt{0,2}.\sqrt{0,1}\)
c, \(\sqrt{12}-\sqrt{27}+\sqrt{3}\)
d, \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
e, \(\left(\sqrt{12}-2\sqrt{75}\right).\sqrt{3}\)
f, \(\sqrt{3}.\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right)\)
g, \(\left(\sqrt{18}+\sqrt{32}-\sqrt{50}\right).\sqrt{2}\)
h, \(\sqrt{50}-\sqrt{18}+\sqrt{200}-\sqrt{162}\)
k, \(\frac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
l, \(\frac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
m, \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
n, \(\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}\)
p, \(\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)
q, \(2\sqrt{3}\left(\sqrt{2}-3\right)+\left(2-\sqrt{3}\right)^2+6\sqrt{3}\)
Rút gọn các biểu thức sau :
a,\(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b,\(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c,\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d, D=\(\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\) \(\left(vớix\ne y,x\ne-y\right)\)
1)Tính:
a)(\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\))\(^2\) b)\(\sqrt{2-\sqrt{3}-\sqrt{2+\sqrt{3}}}\) c)\(\frac{\sqrt{10}+\sqrt{6}}{2\sqrt{5}+\sqrt{12}}\) d)\(\sqrt{8-2\sqrt{15}-\sqrt{8+2\sqrt{15}}}\) e)\(\sqrt{\left(1-\sqrt{2007}\right)^2}.\sqrt{2008+2\sqrt{2007}}\)
Rút gọn:
a)\(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b)\(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c)\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d)\(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}\)