Tìm x:
căn x + căn (x-5) nhỏ hơn hoặc bằng căn 5
Tìm x:
căn x + căn (x-5) nhỏ hơn hoặc bằng căn 5
C=2x-6 căn x+1(với x lớn hơn hoặc=0)
\(A=x+\sqrt{x}\) có điều kiện xác định là: \(x\ge0\)
\(\Rightarrow A_{min}=0\) khi x = 0
\(B=x+5\sqrt{x+7}\) có điều kiện xác định là: \(x\ge-7\)
\(\Rightarrow B_{min}=-7+5\cdot0=-7\) khi x = -7
\(C=2x-6\sqrt{x+1}\) có điều kiện xác định là \(x\ge-1\)
\(\Rightarrow C_{min}=2\cdot\left(-1\right)-6\cdot0=-2\) khi x = -1
Bài 6 Tìm x không âm biết
a)căn x<7
a)căn 2x<6
a)căn 4x lớn hơn hoặc bằng 4
a) căn x< căn 6
b)căn x>4
b)căn 2x bé hơn hoặc bằng 2
b)căn 3x bé hơn hoặc bằng căn 9
b) căn 7x bé hơn hoặc bằng căn 35
c) căn x+1>3
c) căn 4-x bé hơn hoặc bằng 6
c) căn 2x+1 bé hơn hoặc bằng 3
c)căn 3x+2> căn 11
Giúp mình với ạ
Giúp mình câu c với ạ
\(a_1,\sqrt{x}< 7\\ \Rightarrow x< 49\\ a_2,\sqrt{2x}< 6\\ \Rightarrow x< 18\\ a_3,\sqrt{4x}\ge4\\ \Rightarrow4x\ge16\\ \Rightarrow x\ge4\\ a_4,\sqrt{x}< \sqrt{6}\\ \Rightarrow x< 6\)
\(b_1,\sqrt{x}>4\\ \Rightarrow x>16\\ b_2,\sqrt{2x}\le2\\ \Rightarrow2x\le4\\ \Rightarrow x\le2\\ b_3,\sqrt{3x}\le\sqrt{9}\\ \Rightarrow3x\le9\\ \Rightarrow x\le3\\ b_4,\sqrt{7x}\le\sqrt{35}\\ \Rightarrow7x\le35\\ \Rightarrow x\le5\)
Mình cám ơn Hà Quang Minh rất nhiều
Tìm x không âm khi biết :
1. căn x > 2
2. 5 > căn x
3. căn x < căn 10
4. căn 3 x < 3
5. 14 lớn hơn hoặc bằng 7 căn 2x
\(\sqrt{x}>2\Leftrightarrow x>4\)
\(5>\sqrt{x}\Leftrightarrow x< 25\)
\(\sqrt{x}< \sqrt{10}\Leftrightarrow x< 10\)( x không âm )
\(\sqrt{3x}< 3\Leftrightarrow3x< 9\Leftrightarrow x< 3\)
\(14\ge7\sqrt{2x}\Leftrightarrow\sqrt{2x}\le2\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
Tham khảo nhé~
\(1.\sqrt{x}>2\left(Đk:x\ge0\right)\\ \Leftrightarrow\sqrt{x}>\sqrt{4}\)
\(\Leftrightarrow x>4\)
X - 3 căn x + 2 với X lớn hơn hoặc bằng 0 , y lớn hơn hoặc bằng 0
X+5 căn x + 6với X lớn hơn hoặc bằng 0 , y lớn hơn hoặc bằng 0
\(X\sqrt{x}+y\sqrt{y}\)
với X lớn hơn hoặc bằng 0 , y lớn hơn hoặc bằng 0
Đề bài khó hiểu quá. Bạn cần viết lại đề để được hỗ trợ tốt hơn.
Đề bài là thế này đúng không bạn:
Cho các số thực không âm x; y thỏa mãn: \(x^2+y^2\le2\)
Tìm GTLN của: \(P=\sqrt{29x+3y}+\sqrt{3x+29y}\)
P/s: bạn nên sử dụng tính năng gõ công thức để người khác dễ đọc hơn (đây là tính năng rất đơn giản, dễ dàng làm quen, nó nằm ở biểu tượng \(\sum\) trên khung soạn thảo)
tìm giá trị nhỏ nhất của P , biết P = x - 2 (căn x - 3) + 2 với x lớn hơn hoặc bằng 3
căn bậc hai(x + 2*căn bậc hai(x -1)) + căn bậc hai(x -2*căn bậc hai(x-1))
Với 1 bé hơn hoặc bằng x bé hơn hoặc bằng 2
C = x+2 × căn x +1 trên căn x +2. Với x lớn hơn hoặc bằng 0, tìm giá trị nhỏ nhất của C