Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Anh Đức
Xem chi tiết
nguyễn thư linh
Xem chi tiết
Akai Haruma
30 tháng 4 2023 lúc 22:46

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

Thảo Nguyên Trần
Xem chi tiết
Đỗ Đăng Khoa
Xem chi tiết
Đỗ Đăng Khoa
13 tháng 10 2023 lúc 21:33

huhuhuhu help me cứi tui

nguyễn thư linh
Xem chi tiết
YangSu
29 tháng 4 2023 lúc 16:44

thỏa mãn cái biểu thức á bạn, chỗ \(x_2\) ( trước dấu "=" ) có mũ 2 không?

Nguyễn Lê Phước Thịnh
30 tháng 4 2023 lúc 14:42

Δ=(2m-2)^2-4(2m-3)

=4m^2-8m+4-8m+12

=4m^2-16m+16=(2m-4)^2

Để phương trình có hai nghiệm phân biệt thì 2m-4<>0

=>m<>2

x1^2+x2^2=(x1+x2)^2-2x1x2

=(2m-2)^2-2(2m-3)

=4m^2-8m+4-4m+6

=4m^2-12m+10

=>x1^2=4m^2-12m+10-x2^2

x1^2+2x1x2-x2=1

=>4m^2-12m+10-x2^2+4m-6-x2=1

=>-x2^2-x2+4m^2-8m+3=0

=>x2^2+x2-4m^2+8m-3=0(1)

Δ=1^2-4*(-4m^2+8m-3)

=1+16m^2-32m+12

=16m^2-32m+13

=16(m^2-2m+13/16)

=16(m^2-2m+1-3/16)

=16(m-1)^2-3

Để(1) có nghiệm thì 16(m-1)^2-3>=0

=>(m-1)^2>=3/16

=>\(\left[{}\begin{matrix}m>=\dfrac{\sqrt{3}+1}{4}\\m< =\dfrac{-\sqrt{3}+1}{4}\end{matrix}\right.\)

nguyễn thư linh
Xem chi tiết
Trần Thảo Nguyên
Xem chi tiết
Akai Haruma
12 tháng 2 2018 lúc 16:08

Bài 1:

Để pt có hai nghiệm phân biệt thì \(\Delta=m^2-4(m-2)>0\Leftrightarrow m^2-4m+8>0\)

\(\Leftrightarrow (m-2)^2+4>0\) (luôn đúng với mọi \(m\in\mathbb{R}\) )

Khi đó áp dụng hệ thức Viete ta có: \(\left\{\begin{matrix} x_1+x_2=m\\ x_1x_2=m-2\end{matrix}\right.\)

a)

Từ đây ta có:

\(x_1^2+x_2^2=7\)

\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2=7\)

\(\Leftrightarrow m^2-2(m-2)=7\)

\(\Leftrightarrow m^2-2m-3=0\)

\(\Leftrightarrow (m+1)(m-3)=0\Leftrightarrow \left[\begin{matrix} m=-1\\ m=3\end{matrix}\right.\) ((đều thỏa mãn)

b)

\(x_1^3+x_2^3=18\)

\(\Leftrightarrow (x_1+x_2)^3-3x_1x_2(x_1+x_2)=18\)

\(\Leftrightarrow m^3-3m(m-2)=18\)

\(\Leftrightarrow m^2(m-3)+6(m-3)=0\)

\(\Leftrightarrow (m-3)(m^2+6)=0\Leftrightarrow \left[\begin{matrix} m-3=0\\ m^2+6=0(\text{vô lý})\end{matrix}\right.\)

\(\Rightarrow m=3\)

Akai Haruma
12 tháng 2 2018 lúc 16:17

Bài 2:

PT có hai nghiệm phân biệt \(\Leftrightarrow \Delta'=m^2-(m^2-4)>0\Leftrightarrow 4>0\) (luôn đúng với mọi $m$)

Khi đó áp dụng hệ thức Viete ta có: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-4\end{matrix}\right.(*)\)

a) Ta có:

\(x_2=2x_1\Rightarrow \left\{\begin{matrix} x_1+2x_1=2m\\ 2x_1^2=m^2-4\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} 3x_1=2m\\ 2x_1^2=m^2-4\end{matrix}\right.\)

\(\Rightarrow \left(\frac{2m}{3}\right)^2=\frac{m^2-4}{2}\Leftrightarrow 8m^2=9m^2-36\)

\(\Leftrightarrow m^2=36\Rightarrow m=\pm 6\)

b)

\(3x_1+2x_2=7\)

\((*)\Leftrightarrow \left\{\begin{matrix} 2x_1+2x_2=4m\\ x_1.2x_2=2(m^2-4)\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} 2x_1+7-3x_1=4m\\ x_1(7-3x_1)=2m^2-8\end{matrix}\right.\)

Thay \(x_1=7-4m\) ta có : \(7x_1-3x_1^2=2m^2-8\)

\(\Leftrightarrow 7(7-4m)-3(7-4m)^2=2m^2-8\)

\(\Leftrightarrow 2m^2-8+3(7-4m)^2-7(7-4m)=0\)

\(\Leftrightarrow 50m^2-140m+90=0\)

\(\Leftrightarrow 10(m-1)(5m-9)=0\)

\(\Leftrightarrow \left[\begin{matrix} m=1\\ m=\frac{9}{5}\end{matrix}\right.\)

Minh Thọ Nguyễn Bùi
Xem chi tiết
MinYeon Park
Xem chi tiết
Nguyễn Thị BÍch Hậu
15 tháng 6 2015 lúc 12:25

1, thay m=-2 vào giải chắc bạn làm đc nếu k liên hệ mình giải cho

b, giải sử pt có 2 nghiệm pb, áp dụng hệ thức vi ét ta có: \(x1+x2=2m+2\)\(x1.x2=m-2\Leftrightarrow2.x1.x2=2m-4\)

=> \(x1+x2-2.x1.x2=2m+2-2m+4=6\)=> hệ thức liên hệ k phụ thuộc vào m

2) \(\Delta=4\left(m-3\right)^2+4>0\) với mọi m=> pt luôn có 2 nghiệm pb

áp dụng hệ thức vi ét ta có: \(x1+x2=2m-6\)\(x1.x2=-1\)

câu này bạn xem có sai đề k. loại bài toán áp dụng hệ thức vi ét này k bao giờ có đề là x1-x2 đâu nha

sửa đề rồi liên hệ để mình làm tiếp nha

 

la
Xem chi tiết