thỏa mãn cái biểu thức á bạn, chỗ \(x_2\) ( trước dấu "=" ) có mũ 2 không?
Δ=(2m-2)^2-4(2m-3)
=4m^2-8m+4-8m+12
=4m^2-16m+16=(2m-4)^2
Để phương trình có hai nghiệm phân biệt thì 2m-4<>0
=>m<>2
x1^2+x2^2=(x1+x2)^2-2x1x2
=(2m-2)^2-2(2m-3)
=4m^2-8m+4-4m+6
=4m^2-12m+10
=>x1^2=4m^2-12m+10-x2^2
x1^2+2x1x2-x2=1
=>4m^2-12m+10-x2^2+4m-6-x2=1
=>-x2^2-x2+4m^2-8m+3=0
=>x2^2+x2-4m^2+8m-3=0(1)
Δ=1^2-4*(-4m^2+8m-3)
=1+16m^2-32m+12
=16m^2-32m+13
=16(m^2-2m+13/16)
=16(m^2-2m+1-3/16)
=16(m-1)^2-3
Để(1) có nghiệm thì 16(m-1)^2-3>=0
=>(m-1)^2>=3/16
=>\(\left[{}\begin{matrix}m>=\dfrac{\sqrt{3}+1}{4}\\m< =\dfrac{-\sqrt{3}+1}{4}\end{matrix}\right.\)