Cho phương trình: x2 − mx + m − 1 = 0
a) Chứng minh rằng phương trình luôn có nghiệm với mọi m
b/ gọi x1, x2 là hai nghiệm của phương trình tìm giá trị của m để x1 = 2x2
Cho phương trình: x² - mx + m - 1 = 0(x là ẩn) a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m b) Tìm giá trị của m để phương trình có 2 nghiệm x1, x2 thoả mãn: x1 - 2x2 = 1
Cho phương trình x2-mx-3=0(m là tham số)
a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m
b) Gọi x1, x2là hai nghiệm của phương trình. Tìm m để (x1+6).(x2+6) = 2019
(mink đag cần gấp)
`a)ac=-3<0`
`=>b^2-4ac>0`
`=>` phương trình luôn có hai nghiệm phân biệt với mọi m
`b)` áp dụng vi-ét:`x_1+x_2=m,x_1.x_2=-3`
`(x_1+6).(x_2+6) = 2019`
`<=>x_1.x_2+6(x_1+x_2)+36=2019`
`<=>6m-3+36=2019`
`<=>6m+33=2019`
`<=>6m=1986`
`<=>m=331`
Vậy `m=331` thì `(x_1+6).(x_2+6) = 2019`
Cho phương trình x2-mx-3=0(m là tham số)
a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m
b) Gọi x1, x2là hai nghiệm của phương trình. Tìm m để (x1+6).(x2+6) = 2019
(mink đag cần gấp)
`a)ac=-3<0`
`=>b^2-4ac>0`
`=>` phương trình luôn có hai nghiệm phân biệt với mọi m
`b)` áp dụng vi-ét:`x_1+x_2=m,x_1.x_2=-3`
`(x_1+6).(x_2+6) = 2019`
`<=>x_1.x_2+6(x_1+x_2)+36=2019`
`<=>6m-3+36=2019`
`<=>6m+33=2019`
`<=>6m=1986`
`<=>m=331`
Vậy `m=331` thì `(x_1+6).(x_2+6) = 2019`
Cho phương trình x2-mx-3=0(m là tham số)
a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m
b) Gọi x1, x2là hai nghiệm của phương trình. Tìm m để (x1+6).(x2+6) = 2019
(mink đag cần gấp)
a,ta có \(\Delta\)=\(\left(-m\right)^2-4.\left(-3\right)=m^2+12\)
vì \(m^2\ge\)0(\(\forall\)m)=>\(m^2+12\ge12=>m^2+12>0=>\Delta>0\)
vậy pt luôn có 2 nghiệm phân biệt với mọi m
b, theo vi ét=>\(\left\{{}\begin{matrix}x1+x2=m\\x1.x2=-3\end{matrix}\right.\)
có \(\left(x1+6\right).\left(x2+6\right)=2019< =>x1.x2+6x1+6x2+36-2019=0< =>-3+6\left(x1.x2\right)-1983=0< =>6m=1986< =>m=\dfrac{1986}{6}=331\)
Cho phương trình bậc hai x^2-mx+m-3=0 Chứng minh rằng phương trình luôn có nghiệm với mọi m Tìm các giá trị m để phương trình có hai nghiệm x1 x2 sao cho bt A=2(x1+x2)-x1×x2) đạt giá trị nhỏ nhất
Ptr có:`\Delta=(-m)^2-4(m-3)=m^2-4m+12=(m-2)^2+8 > 0 AA m`
`=>` Ptr luôn có nghiệm `AA m`
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=m),(x_1.x_2=c/a=m-3):}`
Ta có:`A=2(x_1 ^2+x_2 ^2)-x_1.x_2`
`<=>A=2[(x_1+x_2)^2-2x_1.x_2]-x_1.x_2`
`<=>A=2[m^2-2(m-3)]-(m-3)`
`<=>A=2(m^2-2m+6)-m+3`
`<=>A=2m^2-4m+12-m+3=2m^2-5m+15`
`<=>A=2(m^2-5/2+15/2)`
`<=>A=2[(m-5/4)^2+95/16]`
`<=>A=2(m-5/4)^2+95/8`
Vì `2(m-5/4)^2 >= 0 AA m<=>2(m-5/4)^2+95/8 >= 95/8 AA m`
Hay `A >= 95/8 AA m`
Dấu "`=`" xảy ra`<=>(m-5/4)^2=0<=>m=5/4`
Vậy `GTN N` của `A` là `95/8` khi `m=5/4`
Đề liệu cs sai 0 bạn nhỉ, ở cái biểu thức `A` í chứ nếu đề vậy thì 0 tìm đc GTNN đâu (Theo mik thì là vậy)
Cho phương trình x2+(2m-1)x-m=0 (1)
a)Chứng minh phương trình (1) luôn có nghiệm với mọi m
b)Gọi x1;x2 là hai nghiệm của phương trình (1).Tìm giá trị của m để biểu thức
A=x12+x22-x1x2 có giá trị nhỏ nhất
a: Δ=(2m-1)^2-4*(-m)
=4m^2-4m+1+4m=4m^2+1>0
=>Phương trình luôn có nghiệm
b: \(A=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)
\(=\left(2m-1\right)^2-3\left(-m\right)\)
=4m^2-4m+1+3m
=4m^2-m+1
=4(m^2-1/4m+1/4)
=4(m^2-2*m*1/8+1/64+15/64)
=4(m-1/8)^2+15/16>=15/16
Dấu = xảy ra khi m=1/8
Cho phương trình: x2-(2m-1)x+m-1=0
a) chứng minh rằng phương trình luôn cố 2 nghiệm phân biệt x1,x2 với mọi m
b) tìm tất cẩ các giá trị của m để x13+x23=2m2-m
a: Δ=(2m-1)^2-4(m-1)
=4m^2-4m+1-4m+4
=4m^2-8m+5
=4m^2-8m+4+1=(2m-2)^2+1>=1>0 với mọi m
=>PT luôn có 2 nghiệm với mọi m
b: x1^3+x2^3=2m^2-m
=>(x1+x2)^3-3x1x2(x1+x2)=2m^2-m
=>(2m-1)^3-3(m-1)(2m-1)=2m^2-m
=>8m^3-12m^2+6m-1-3(2m^2-3m+1)-2m^2+m=0
=>8m^3-14m^2+7m-1-6m^2+9m-3=0
=>8m^3-20m^2+16m-4=0
=>m=1/2 hoặc m=1
cho phương trình x2- mx+m-1=0 (m là tham số)
a)C.M phương trình luôn có nghiệm với mọi giá trị của m
b)Cho m=3, gọi x1, x2 là hai nghiệm của phương trình. Tính giá trị của x12 +x22 .
`a)Delta`
`=m^2-4(m-1)`
`=m^2-4m+4`
`=(m-2)^2>=0`
`=>` pt luôn có nghiệm với mọi m
b)Áp dụng vi-ét:
`x_1+x_2=m,x_1.x_2=m-1`
`=>x_1^2+x_2^2`
`=(x_1+x_2)^2-2x_1.x_2`
`=m^2-2(m-1)`
`=m^2-2m+1`
Với `m=3`
`=>x_1^2+x_2^2=9-6+1=4`
Cho phương trình x2+ 2(m − 1)x − 6m − 7 = 0 (1) (m là tham số).
a) Chứng minh rằng với mọi giá trị của m thì phương trình (1) luôn có hai nghiệm phân biệt.
b) Gọi x1, x2là hai nghiệm của phương trình (1). Tìm các giá trị của m thỏa x1(x1+3/3x2)+x2(x2+3/2x1)=15
các bạn ai biết thì chỉ giúp mình với ạ
\(x^{2^{ }}+2\left(m-1\right)x-6m-7=0\left(1\right)\)
a) \(Dental=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-6m-7\right)\)
\(< =>4\cdot\left(m^2-2m+1\right)+24m+28\)
\(< =>4m^2-8m+4+24m+28\)
\(< =>4m^2+16m+32\)
\(< =>\left(2m+4\right)^2+16>0\) với mọi m
Vậy phương (1) luôn có 2 nghiệm phân biệt với mọi m
b) Theo định lí vi ét ta có:
x1+x2= \(\dfrac{-2\left(m-1\right)}{1}=-2m+1\)
x1x2= \(-6m-7\)
quy đồng
khử mẫu
tách sao cho có tích và tổng
thay x1x2 x1+x2
kết luận
mặt xấu vl . . .