Tìm nghiệm của đa thức H(x)= 2x\(^2\) - 7x +6
a)Tìm nghiệm của đa thức sau:F(x)=2x-1; G(x)=7x2+14 ;;;;b)Tìm đa thức bậc 2 của F(x) biết:F(0)=2;F(-1)=6 và một nghiệm của đa thức bằng 2
Cho đa thức : f(x)= 9-x^5+4x+2x^3+x^2-7x^4
g(x)=x^5-9+2x^2+7x^4+2x^3+3x
a) Tính tổng h(x)= f(x)+g(x)
b)Tìm nghiệm của đa thức h(x)
tìm nghiệm của các đa thức:
h(x)=x2+5x+6
g(x)=2x2+7x-9
Phân tích đa thức thành nhân tử thôi bạn :
Ta có :
\(h\left(x\right)=x^2+5x+6\)
\(h\left(x\right)=x\left(x+2\right)+3\left(x+2\right)\)
\(h\left(x\right)=\left(x+2\right)\left(x+3\right)\)
\(\Rightarrow N_oh\left(x\right)=-2;-3\)
\(g\left(x\right)=2x^2+7x-9\)
\(g\left(x\right)=2x^2+9x-2x-9\)
\(g\left(x\right)=2x\left(x-1\right)+9\left(x-1\right)\)
\(g\left(x\right)=\left(x-1\right)\left(2x+9\right)\)
\(\Rightarrow N_og\left(x\right)=1;-4,5\)
Bài 4: Thu gọn rồi tìm nghiệm của các đa thức sau:
a) f(x) = x(1-2x) + (2x mũ 2 -x +4 )
b) g(x) = x(x-5) - x(x+2)+ 7x
c) h(x)= x(x-1) +1
`@` `\text {Ans}`
`\downarrow`
`4,`
`a)`
\(f(x)=x(1-2x) + (2x^2 -x +4 )=0\)
`=> x-2x^2 + 2x^2-x+4=0`
`=> (x-x)+(-2x^2+2x^2)+4=0`
`=> 4=0 (\text {vô lí})`
Vậy, đa thức không có nghiệm.
`b)`
\(g(x) = x(x-5) - x(x+2)+ 7x=0\)
`=> x^2-5x-x^2-2x+7x=0`
`=> (x^2-x^2)+(-5x-2x+7x)=0`
`=> 0=0 (\text {luôn đúng})`
Vậy, đa thức có vô số nghiệm.
`c)`
\(h(x)= x(x-1) +1=0\)
`=> x^2-x+1=0`
Vì \(x^2 \ge 0\) \(\forall\) `x`
`=> x^2 - x + 1 \ge 1`\(\forall x\)
`1 \ne 0`
`=>` Đa thức vô nghiệm.
`\text {#KaizuulvG}`
Thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của biến
cho đa thức A=9-x^3+4x-2x^3+4x^2-6 và B=3+x^3+4x^2+2x^3+7x-6x^3-8x+4
1)thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của biến
2)tìm nghiệm của đa thức A-B
mong mn trả lời giúp ạ
1: \(A\left(x\right)=-3x^3+4x^2+4x+3\)
\(B\left(x\right)=-3x^3+4x^2-x+7\)
2: \(A-B=0\)
=>4x+3-x+7=0
=>3x+10=0
hay x=-10/3
1)
\(A=9-x^3+4x-2x^3+4x^2-6\)
\(A=(9-6)+\left(-x^3-2x^3\right)+4x+4x^2\)
\(A=3-3x^3+4x+4x^2\)
\(A=-3x^3+4x^2+4x+3\)
\(B=3+x^3+4x^2+2x^3+7x-6x^3-8x+4\)
\(B=(3+4)+(x^3+2x^3-6x^3)+4x^2+(7x-8x)\)
\(B=7-3x^3+4x^2-x\)
\(B=-3x^3+4x^2-x+7\)
2) \(A-B=(-3x^3+4x^2+4x+3)-\) \((-3x^3+4x^2-x+7)\)
\(A-B=-3x^3+4x^2+4x+3+\)\(3x^3-4x^2+x-7\)
\(A-B\) \(=\left(-3x^3+3x^3\right)+\left(4x^2-4x^2\right)+\left(4x+x\right)+\left(3-7\right)\)
\(A-B\) \(=5x-4\)
Đặt tên cho đa thức \(5x-4\) là \(H\left(x\right)\)
Cho \(H\left(x\right)=0\)
hay \(5x-4=0\)
\(5x\) \(=0+4\)
\(5x\) \(=4\)
\(x\) \(=4:5\)
\(x\) \(=\) \(0,8\)
Vậy \(x=0,8\) không phải là nghiệm của H(\(x\))
MIK KHÔNG CHẮC LÀ CÂU 2 ĐÚNG
Tìm nghiệm của đa thức:
+)g(x)=x2+x+1
+)h(x)=x2+7x+10
+)k(x)=2x2-5x+2
\(a.\)Cho \(g\left(x\right)=0\)\(\Rightarrow\) \(x^2+x+1=0\)
\(\Rightarrow\) \(x^2+0,5x+0,5x+3+7=0\)
\(\Rightarrow\) \(\left(x^2+0,5x\right)+\left(0,5x+3\right)+7=0\)
\(\Rightarrow\) \(x\left(x+0,5\right)+0,5\left(x+0,5\right)+7=0\)
\(\Rightarrow\) \(\left(x+0,5\right)\left(x+0,5\right)+7=0\)
\(\Rightarrow\) \(\left(x+0,5\right)^2+7=0\)
\(\Rightarrow\) \(\left(x+0,5\right)^2=-7\)
mà \(\left(x+0,5\right)^2\ge0\)\(\forall x\in R\) \(\Rightarrow\) không có giá trị của x
\(\Rightarrow\) \(g\left(x\right)\) vô nghiệm
\(b.\)Cho \(h\left(x\right)=0\)\(\Rightarrow\) \(x^2+7x+10=0\)
\(\Rightarrow\) \(x^2+3,5x+3,5x+7+3=0\)
\(\Rightarrow\) \(\left(x^2+3,5x\right)+\left(3,5x+7\right)+3=0\)
\(\Rightarrow\) \(\Rightarrow\)\(x\left(x+3,5\right)+3,5\left(x+3,5\right)+3=0\)
\(\Rightarrow\) \(\left(x+3,5\right)\left(x+3,5\right)+3=0\)
\(\Rightarrow\) \(\left(x+3,5\right)^2+3=0\)
mà \(\left(x+3,5\right)^2\ge0\)\(\forall x\in R\) \(\Rightarrow\)không có giá trị của x
\(\Rightarrow\) h(x) vô nghiệm
G(x)=x2+x +1
=x2+1/2x+1/2x+1/4+3/4
=x(x+1/2)+1/2(x+1/2)+3/4
=(x+1/2)2+3/4
Dễ c/m nó vô nghiệm
h(x)=x2+7x+10
Ở đây có một cái mẹo này:
đầu tiên, ta phải phán đoán xem đa thức này là có hay ko có nghiệm. Nếu có nghiệm thì sẽ làm theo côg thức khác, còn nếu đa thức ko có nghiệm thỉ làm như sau:
-Ta đưa về dạng x2+x+n(n thuộc tập R)(hoặc là x2-x+n cx đc, miễn sao là phải có 3 hạng tử như trên)
-Sau đó ta tách x ra làm đoi, n tách ra 2 cái giống hệt phần hệ số của x đc tách ra, còn thừa thì kệ nó
- nhóm vào rồi ta đc 1 form như sau: (x+phần tách của n)2+phần thừa của n rồi c/m vô nghiệm dễ như ăn cơm
Áp dụng vào h(x) ta đc như sau:
h(x) =(x+3,5)2+3
g(x) ta đoán đc là nó có nghiệm
g(x)=2x2-x-4x+2=0
=(2x2-x)-(4x-2)=0
=x(2x-1)-2(2x-1)=0
=(2x-1)(x-2)=0
suy ra 2x-1=0 hoặc x-2=0
suy ra x=0,5 hoăc x=2
Cho đa thức
M(x)=-2x^4-3x^2-7x-2
N(x)=3x^2+4x-5+2x^4
a) Tính P(x)=M(x)+N(x) rồi tìm nghiệm của đa thức P(x)
b) Tìm đa thức Q(x) sao cho Q(x)+M(x)=N(x)
a: \(M\left(x\right)=-2x^4-3x^2-7x-2\)
\(N\left(x\right)=2x^4+3x^2+4x-5\)
\(P\left(x\right)=M\left(x\right)+N\left(x\right)=-3x-7\)
Đặt P(x)=0
=>-3x-7=0
hay x=-7/3
b: Q(x)=N(x)-M(x)
\(=2x^4+3x^2+4x+5+2x^4+3x^2+7x+2\)
\(=4x^4+6x^2+11x+7\)
`a)P(x)=M(x)+N(x)`
`=-2x^4-3x^2-7x-2+3x^2+4x-5+2x^4`
`=-3x-7`
Cho `P(x)=0`
`=>-3x-7=0`
`=>-3x=7`
`=>x=-7/3`
________________________________________________________
`b)Q(x)+M(x)=N(x)`
`=>Q(x)=N(x)-M(x)`
`=>Q(x)=3x^2+4x-5+2x^4+2x^4+3x^2+7x+2`
`=>Q(x)=4x^4+6x^2+11x-3`
Cho 2 đa thức: f (x)= \(9-x^5+4x-2x^3+x^2-7x^4\)
g (x)=\(x^5-9+2x^2+7x^4+2x^3-3x\)
a) Tính tổng h (x)= f (x) + g(x)
b) Tìm nghiệm của đa thức h (x)
Giải:
a) \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(\Leftrightarrow h\left(x\right)=9-x^5+4x-2x^3+x^2-7x^4+x^5-9+2x^2+7x^4+2x^3-3x\)
\(\Leftrightarrow h\left(x\right)=x+3x^2\)
b) Để đa thức h(x) có nghiệm
\(\Leftrightarrow h\left(x\right)=0\)
\(\Leftrightarrow x+3x^2=0\)
\(\Leftrightarrow x\left(1+3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
Tìm nghiệm của đa thức g(x)=x^2-3x-4
Tìm nghiệm của đa thức h(x)=2x^3-x^2-2x+1
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)