Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Phương Thu
Xem chi tiết
thanh
20 tháng 2 2016 lúc 21:07

ta có giá trị tuyệt đối của số âm hay dương đều là số dương

=>có 20 cặp x,y

Nguyễn Đức Anh
20 tháng 2 2016 lúc 21:34

nếu x và y\(\ge\)

suy ra 20 =|1|+|9|=|2|+|18|=...=20+0

có 11 cặp số 

nếu x và y < 0 

suy ra 20 = |-1|+|-19|=|-2|+|-18|=....=|-10|+|-10|

có10 cặp số 

nếu x<0 và y>0 hoặc x>0 và y<0

suy ra 20=|-1|+|2|=|1|+|-2|=....=|10|+|-10||=|-10|+|10|

có 20 cặp số 

vậy có tất cả 41 cặp số 

Cẩm Tú Nguyễn
Xem chi tiết
Linh Linh
10 tháng 4 2021 lúc 20:28

khi m=2 ta có hệ pt:

\(\left\{{}\begin{matrix}x+2y=2+1\\2x+y=2.2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=2\\x+2y=3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=\dfrac{2}{3}\\2x+\dfrac{2}{3}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{3}\\2x=\dfrac{7}{3}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=\dfrac{2}{3}\\x=\dfrac{5}{3}\end{matrix}\right.\)

vậy khi m=2 thì hệ pt có nghiệm duy nhất\(\left\{\dfrac{2}{3};\dfrac{5}{3}\right\}\)

Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 20:30

a) Thay m=2 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3y=2\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{3}\\x=3-2y=3-2\cdot\dfrac{2}{3}=\dfrac{5}{3}\end{matrix}\right.\)

Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{5}{3};\dfrac{2}{3}\right)\)

Mách Bài
Xem chi tiết
Nguyễn Quốc Khánh
19 tháng 12 2015 lúc 21:37

<=>\(-10\le\frac{2}{3}x-10\le10\)

<=>\(0\le x\le30\)

tick nha

Thảo Vi
Xem chi tiết
Etermintrude💫
8 tháng 3 2021 lúc 20:42

undefinedundefinedundefined

Lê Mai
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 4 2021 lúc 18:30

\(Q=\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy\)

\(Q=8-6xy+4-2xy=12-8xy\)

\(Q=12-8x\left(2-x\right)=12-16x+8x^2=8\left(x-1\right)^2+4\ge4\)

\(Q_{min}=4\) khi \(x=y=1\)

thành piccolo
Xem chi tiết
Nguyen Thi Mai
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 10 2021 lúc 10:38

a. Đề bài em ghi sai thì phải

Vì:

\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)

Nguyễn Việt Lâm
25 tháng 10 2021 lúc 10:43

b.

Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)

Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R

Hàm bậc 3 nên có tối đa 3 nghiệm

\(f\left(-2\right)=-8+4a-2b+c>0\)

\(f\left(2\right)=8+4a+2b+c< 0\)

\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)

\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)

\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn  có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb

NPN:((
Xem chi tiết
Rin Huỳnh
8 tháng 1 2022 lúc 9:40

A = x3 + y3 + 3x2.y2

= (x + y)3 - 3xy(x + y) + 3x2.y2

= 8 - 6xy + 3x2.y2

= 3(x2y2 - 2xy + 1) + 5

= 3(xy - 1)2 + 5

Do (xy - 1)>= 0 với mọi x, y nên 3(xy - 1)2 + 5 >= 5 với mọi x, y

--> A >= 5

Đẳng thức xảy ra khi x = y = 1.

Vậy GTNN của A là 5 (khi x = y = 1)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 12 2019 lúc 12:03

Đáp án C

Ta có

Khi đó

Vậy giá trị nhỏ nhất của biểu thức P là  3 + 2 2