Cho a, b > 0 và \(a+b\le2\) .
Tìm MAX P= \(\sqrt{a\left(b+1\right)}+\sqrt{b\left(a+1\right)}\)
Cho \(a,b>0:a+b\le2\).Tìm max: P=\(\sqrt{a\left(b+3\right)}+\sqrt{b\left(a+3\right)}\)
\(P=\dfrac{1}{2}\sqrt{4a\left(b+3\right)}+\dfrac{1}{2}\sqrt{4b\left(a+3\right)}\)
\(P\le\dfrac{1}{4}\left(4a+b+3\right)+\dfrac{1}{4}\left(4b+a+3\right)\)
\(P\le\dfrac{1}{4}\left(5a+5b+6\right)\le\dfrac{1}{4}\left(5.2+6\right)=4\)
\(P_{max}=4\) khi \(a=b=1\)
Cho \(a,b\) >0 và \(a+b\le2\) . Tìm giá trị nhỏ nhất của biểu thức: \(P=\sqrt[]{a\left(b+1\right)}+\sqrt[]{b\left(a+1\right)}\)
cho \(\overrightarrow{a}=\left(1;2\sqrt{2}\right),\overrightarrow{b}=\left(\sqrt{x};\sqrt{2-x}\right);\left(0\le x\le2\right).Tìm\left|\overrightarrow{a}\right|,\left|\overrightarrow{b}\right|;\overrightarrow{a}.\overrightarrow{b}.Tìm\)GTLN của y=\(\sqrt{x}+4\sqrt{1-\frac{x}{2}}\)
Cho a,b > 0 và \(a^2+b^2\le2\) . Tìm max \(A=a\sqrt{3b\left(a+2b\right)}+b\sqrt{3a\left(b+2a\right)}\)
Áp dụng BĐT AM - GM, ta có:
\(2\ge a^2+b^2\ge2ab\)
\(\Leftrightarrow ab\le1\)
\(A=a\sqrt{3b\left(a+2b\right)}+b\sqrt{3a\left(b+2a\right)}\)
\(\le\dfrac{a\left(3b+a+2b\right)}{2}+\dfrac{b\left(3a+b+2a\right)}{2}\)
\(=\dfrac{a\left(5b+a\right)+b\left(5a+b\right)}{2}\)
\(=\dfrac{a^2+10ab+b^2}{2}\)
\(\le\dfrac{2+10}{2}=6\)
Dấu "=" xảy ra khi a = b = 1
Cho a, b>0 thỏa mãn: \(a+b\le2\)
Tìm GTLN của P= \(\sqrt{a\left(b+1\right)}+\sqrt{b\left(a+1\right)}\)
Cho \(\left\{{}\begin{matrix}a,b\ge0\\a+b=1\end{matrix}\right.\) tìm max,min \(P=\sqrt{a\left(b+1\right)}+\sqrt{b\left(a+1\right)}\)
+) Tìm min
\(E=\dfrac{1+\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{xy+yz+zx}\)
+) Tìm max và min
\(F=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\)
Trong đó a,b,c>0 và \(min\left\{a,b,c\right\}\ge\dfrac{1}{4}max\left\{a,b,c\right\}\)
Cho a,b,c > 0 và ab+bc+ca=1 Chứng minh \(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le2\left(a+b+c\right)\)
\(VT=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+c\right)\left(b+a\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\le_{AM-GM}\dfrac{a+b+a+c}{2}+\dfrac{b+c+b+a}{2}+\dfrac{c+a+c+b}{2}=2\left(a+b+c\right)=VP\) (đpcm)
Đầy đủ hơn 1 tí nhé
Theo gt : ab + bc + ca = 1 nên a2 + 1 = a2 + ab + bc + ca
= ( a + b )( a + c )
- Áp dụng bđt Cauchy ta có :
\(\sqrt{a^2+1}=\sqrt{\left(a+b\right)\left(a+c\right)}\le\frac{\left(a+b\right)\left(a+c\right)}{2}\)
- Tương tư ta cũng có :
\(\sqrt{b^2+1}\le\frac{\left(b+a\right)+\left(b+c\right)}{2}\)và \(\sqrt{c^2+1}\le\frac{\left(c+a\right)+\left(c+b\right)}{2}\)
Từ đó suy ra : VT \(\le\frac{\left(a+b\right)+\left(a+c\right)+\left(b+a\right)+\left(b+c\right)+\left(c+a\right)+\left(c+b\right)}{2}\)
\(\le2\left(a+b+c\right)=VP\left(đpcm\right)\)
Cho a,b,c > 0 thỏa mãn a + b + c = abc . Tìm
\(A_{max}=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Ta có : \(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{bc+a.abc}}=\frac{a}{\sqrt{bc+a\left(a+b+c\right)}}\)
\(=\frac{a}{\sqrt{bc+a^2+ab+ac}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng bđt Cô-si ngược ta có
\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
C/m tương tự được \(\frac{b}{\sqrt{ca\left(1+b^2\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)
\(\frac{c}{\sqrt{ab\left(1+c^2\right)}}\le\frac{1}{2}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)
Cộng 3 vế của các bđt trên lại ta được
\(A\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{a}{a+c}+\frac{c}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)\)
\(=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b+c=abc\\a=b=c\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=a^3\\a=b=c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^3-3a=0\\a=b=c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a\left(a^2-3\right)=0\\a=b=c\end{cases}}\)
\(\Leftrightarrow a=b=c=\sqrt{3}\left(a,b,c>0\right)\)
Vậy \(A_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\sqrt{3}\)