Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Siêu Nhân Lê
Xem chi tiết
Nguyễn Thị Anh
16 tháng 10 2016 lúc 16:31

sử dụng đồng dư thức hoặc hằng đẳng thức

nguyễn lam nhật
Xem chi tiết
nguyễn lam nhật
9 tháng 5 2016 lúc 20:43

hhv vbmkj55144466

Siêu Nhân Lê
Xem chi tiết
Bùi Thị Vân
17 tháng 10 2016 lúc 8:33

Cô sẽ áp dụng đồng dư để chứng minh, Tuấn có thể trình bày cách của em để mọi người tìm hiểu.
\(Q=\frac{\left(2016+1\right)2016}{2}=2017.3^2.2^4.7\).
ÁP dụng định lý Fermat nhỏ: \(a^{p-1}=1\left(modp\right)\). Nhận xét rằng 2017 là số nguyên tố vì vậy
\(\left(n,2017\right)=1,\)với mọi n  = 1, 2, ..., 2016.
Do đó \(n^{2016}=1\left(mod2017\right),n=1,....,2016\).
Vì vậy: \(n^{2017}=n\left(mod2017\right),n=1,2,...,2017\).
Suy ra: \(1^{2017}+2^{2017}+.....+2016^{2017}=1+2+...+2016\left(mod2017\right)\)
                                                                        \(=2017.1008\left(mod2017\right)\)\(=0\left(mod2017\right)\)
Vì vậy \(1^{2016}+2^{2016}+....+2016^{2016}=0\left(mod2017\right)\).
Ta sẽ chứng minh P chia hết cho \(2^4\) .
Nhận xét rằng \(n=2k\left(k\in N\right),n=\left(2k\right)^{2017}=0\left(mod2^4\right)\).
Xét những hạng tử không chia hết cho 2 là 1, 3, 5, ....., 2015.
Áp dụng định lý Euler : \(a^{\varphi\left(n\right)}=1\left(modn\right),\left(a,n\right)=1\).
Do n = 1, 3, 5, ...., 2015 thì \(\left(n,2^4\right)=1\)( Ước chung lớn nhất bằng 1) , \(\varphi\left(16\right)=8\) nên :
\(n^{2017}=n^{8.252+1}=n\left(n^8\right)^{252}=n\left(mod2^4\right)\)( Do \(n^8=1\left(mod2^4\right)\).
Vì vậy : \(1^{2017}+3^{2017}+...+2015^{2017}=1+3+...2015\left(mod2^4\right)\)
                                                                       \(=2016.504\left(mod2^4\right)\)
                                                                        \(=0\left(mod2^4\right)\).
Vì vậy \(1^{2017}+2^{2017}+.....+2016^{2017}=0\left(mod2^4\right)\)
Những số còn lại là \(3^2,7\)ta chứng minh tương tự.
 

Tuấn
16 tháng 10 2016 lúc 22:25

\(a^n+b^n\) chia hết cho a+b với n lẻ 
áp dụng cái trên là đc nhé bạn 

Nguyễn Ngọc Hải Dương
17 tháng 10 2016 lúc 11:19

mik mới học lớp 7

Hoàng Tử Lớp Học
Xem chi tiết
Nguyễn Minh Phương
19 tháng 10 2016 lúc 22:54

ngu người bài này mà không biết giải

Bạn Nguyễn Minh Phương kia tưởng mik học giỏi lắm à mà chê người khác , chỉ hok giỏi hơn vài người thôi bỏ tính đó đi 

Khách vãng lai đã xóa
Phạm Duy Minh
Xem chi tiết
Phạm Duy Minh
29 tháng 11 2017 lúc 14:27

a là x và y thuộc nhóm rỗng

b thì =-1+-1+-1+...+-1+2017=-1008+2017=1009

c là vì 4S+1 là 5^2016 chia hết cho 5^2016

vì 6(5+5^2+...+5^2014) chia hết cho 6 và bằng S

Đoàn Phương Linh
Xem chi tiết
Ngô Tấn Đạt
26 tháng 12 2017 lúc 10:00

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

Tôi Là Ai
Xem chi tiết
Hyomin
18 tháng 10 2016 lúc 17:34

tớ có lớp 7 thui

nguyễn hoàng linh
Xem chi tiết
Aru Akise
8 tháng 3 2018 lúc 20:25

Ta có A= 1/2015 + 2/2016 + 3/2017 + ... +2016/4030- 2016

          A= 2015-2014/2015 + 2016-2014/2016 +...+4030-2014/4030-2016

           A= 2015/2015-2014/2015+ 2016/2016-2014/2016 + ..... +4030/4030-2014/4030 -2016

           A= 1-2014/2015 + 1-2014/2016 +....+1-2014/4030 -2016

           A= (1+1+1+1+........+1) -(2014/2015+2014/2016+......+2014/4030) -2016

            A=2016  -  2014.(1/2015+1/2016+....+1/4030)   -2016

             A= (2016 - 2016 ) - 2014. ( 1/2015+1/2016+.....+1/4030)

             A=-2014.(1/2015+1/2016+....+1/4030)

   mà B = 1/2015+1/2016+....+1/4030

      nên A : B = -2014

Aru Akise
8 tháng 3 2018 lúc 20:26

các bn hãy ủng hộ mk nhé !!! Thanks everyone!!!

Ngọc Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2023 lúc 18:33

loading...