Cho \(\Delta\)MNP có 3 góc nhọn,các đường cao NQ,PR cắt nhau tại S
a)Chứng minh MS\(\perp\)NP
b)Cho góc MNP=65 độ tính góc SMR
Cho tam giác MNP có 3 góc nhọn , các đường cao NQ , PR cắt nhau tại S
a) Chứng minh MS vuông góc NP
b) Cho góc MNP = 65°. Tính góc SMR
a) Xét ΔMNP có
NQ là đường cao ứng với cạnh MP
PR là đường cao ứng với cạnh MN
MP cắt MN tại S
Do đó: MS\(\perp\)NP
b) Ta có: MS\(\perp NP\)(cmt)
nên \(\widehat{SMN}+\widehat{MNP}=90^0\)
hay \(\widehat{SMN}=25^0\)
Cho tam giác MNP có ba góc nhọn, các đường cao NQ, PR cắt nhau tại S.
a) Chứng minh M S ⊥ N P .
b) Cho M N P ^ = 45 ° . Tính S M R ^ .
Cho tam giác MNP có 3 góc nhọn,các đường cao NQ,PR cắt nhau tại S.
a)Cm MS vuông góc với NP
b)cho ^MNP=65*.tính SMR^
a/ Xét t/g MNP có 2 đg cao NQ ; PR cắt nhautaij S
=> S là trực tâm t/g MNP
=> MS vg góc NP
b/ Có MS vuông góc NP
=> \(\widehat{MNP}+\widehat{SMR}=90^o\)
\(\Rightarrow\widehat{SMR}=25^o\)
Cho tam giác MNP nhọn có góc M= 50 độ, đường cao NK lấy điểm E thuộc đoạn MN sao cho góc MPE = 40 độ. Kéo dài NK cắt PE ở I . Chứng minh
a) góc MNK = góc MPE
b) MI vuông góc NP
c) cho tam giác MNP cân ở M. Tính các góc của tam giác MIP
Cho tam giác MNP vuông tại m có MN = 3 cm góc b = 37 độ A giải tam giác vuông MNP ( số đo góc làm tròn đến độ) B: kẻ đường cao MH ( H€NP ) TÍNH MH Chứng minh góc nmh bằng góc P từ đó tính các tỉ số lượng góc của góc NMH
b: \(\widehat{NMH}+\widehat{N}=90^0\)
\(\widehat{P}+\widehat{N}=90^0\)
Do đó: \(\widehat{NMH}=\widehat{P}\)
Cho tam giác MNP vuông tại M có đường cao MH; gọi A là trung điểm của MP.
a) Tính độ dài các đoạn MH, MN, MP, và số đo góc MAN. Biết NH = 6cm và HP = 8 cm
b) KẺ MK vuông góc với MP cắt Mk tại E. Chứng minh: Tam giá\(\Delta NKP~\) \(\Delta NHA\)
c) Qua P kẻ đường thằng vuông góc với MP cắt MK tại E. Chứng minh rằng \(AE\perp NP\)
cho tam giác MNP cân tại M Vẽ mi vuông góc với NP tại I
Chứng minh MI là đường trung trực của N P
vẽ IE vuông góc với MN tại A, IB vuông góc với MP tại B chứng minh tam giác IAB cân
Giả sử góc MNP = 45° MN = 2 cm Tính NP
Giả sử góc MNP = 30 độ Chứng minh tam giác AIB đều
1. Cho tam giác MNP cân tại M vẽ MH thuộc NP (H thuộc NP)
a) Chứng minh NH = PH
b) Cho MH = 4 cm; NH = 3 cm. Tính MN
2. Cho tam giác MNP vuông tại M, có góc N = 60o và MN = 5 cm. Tia phân giác của góc N cắt MP tại D. Kẻ DE vuông góc với PN tại E
a) Chứng minh: tam giác MNP = tam giác END
b) Chứng minh: tam giác MNE là tam giác đều
c) Tính độ dài cạnh PN
3. Cho tam giác MNP cân tại M, góc M = 30o; NP = 2 cm. Trên cạnh MP lấy điểm Q sao cho góc PNQ = 60o. Tính độ dài MQ