Cho \(\Delta\)MNP có 3 góc nhọn,các đường cao NQ,PR cắt nhau tại S
a)Chứng minh MS\(\perp\)NP
b)Cho góc MNP=65 độ tính góc SMR
Nhanh với ạ
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.Chứng minh tứ giác BFECnội tiếpTia AO cắt đường tròn (O) tại K. Chứng minh AC = AK. AD;Gọi M là trung điểm của BC. Chứng minh ba điểm H, M, K thẳng hàng.Cho BC cố định, A chuyển động trên cung lớn BC sao cho tam giác ABC có ba góc nhọn, chứng minh diện tích hình tròn ngoại tiếp tam giác AEF không đổi.
Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng
\(a, \frac {AB+AC}{2}\)
\(b,BE+CF < \frac{3}{2}BC\)
\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)
Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN
Bài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB
Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .
Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB
Cho tam giác MNP nhọn có góc M= 50 độ, đường cao NK lấy điểm E thuộc đoạn MN sao cho góc MPE = 40 độ. Kéo dài NK cắt PE ở I . Chứng minh
a) góc MNK = góc MPE
b) MI vuông góc NP
c) cho tam giác MNP cân ở M. Tính các góc của tam giác MIP
Cho tam giác MNP cân tại M , vẽ MH vuông góc với NP
a ) Chứng minh : Tam giác MHN = Tam giác MHP
b ) Chứng minh MH là phân giác của tam giác MNP
c ) Tính MH nếu MN = 10 cm , NP = 12 cm
d ) Vẽ đường thẳng vuông góc với MN tại N và đường thẳng vuông góc với MP tại P , hai đường thẳng này cắt nhau tại K . Chứng minh M , K , H thẳng hàng .
Cho tam giác ABC nhọn, AB>AC, phân giác BD và CE cắt nhau tại I.a)tính các góc của tam giác DIE nếu góc A= 60 độ,b) gọi giao điểm cña BD và CE với đường cao AH của tam giác ABC lần lượt là M và N .chứng minh: BM > MN + NC.
Cho tam giác MNP có N ^ > P ^ . Vẽ phân giác MK.
a) Chứng minh M K P ^ − M K N ^ = N ^ − P ^ .
b) Đường thẳng chứa tia phân giác góc ngoài đỉnh M của tam giác MNP, cắt đường thẳng NP tại E. Chứng minh rằng: M E P ^ = N ^ − P ^ 2
Cho tam giác MNP có N ^ > P ^ .Vẽ phân giác MK.
a) Chứng minh M K P ^ − M K N ^ = N ^ − P ^
b) Đường thẳng chứa tia phân giác góc ngoài đỉnh M của tam giác MNP, cắt đường thẳng NP tại E. Chứng minh rằng: M E P ^ = N ^ − P ^ 2
Cho tam giác ABC có ba góc nhọn, các đường cao AD, BE cắt nhau tại I.
a) Chứng minh C I ⊥ A B .
b) Cho A B C ^ = 50 ° . Tính A I E ^ , D I E ^ .