Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thúy
Xem chi tiết
Trương Ngọc Hà
Xem chi tiết
Hoàng Trang
Xem chi tiết
bui manh duc
Xem chi tiết
Nguyễn Hà Anh
Xem chi tiết
Xyz OLM
21 tháng 4 2021 lúc 23:12

Nhận thấy \(\hept{\begin{cases}x^4\ge0\forall x\\x^2\ge0\forall x\end{cases}}\Rightarrow x^4+x^2\ge0\Rightarrow x^4+x^2+4\ge4>0\forall x\)

=>A(x) > 0 \(\forall x\inℝ\)

Khách vãng lai đã xóa
Nguyễn Hà Anh
21 tháng 4 2021 lúc 23:13

thanks bạn

Khách vãng lai đã xóa
Chang Mai
Xem chi tiết
Đặng Minh Triều
14 tháng 6 2016 lúc 9:48

A(x)=x4+2x2+4

=x4+x2+x2+1+3

=x2.(x2+1)+(x2+1)+3

=(x2+1)(x2+1)+3

=(x2+1)+3>0 với mọi x thuộc R

Nguyễn Thị Vân
18 tháng 6 2016 lúc 20:16

bài bao nhiêu đấy chang

 

uzumaki naruto
Xem chi tiết
Hà Vy Nguyễn
Xem chi tiết
Nam Casper
27 tháng 1 2023 lúc 19:48

c + bx + ax = a - b+c=0

 

 

 

 

Phạm Xuân Dương
27 tháng 1 2023 lúc 20:04

P(x)= 0 với mọi x nên:

thay x = 0 => c=0;

thay x = 1 => a+b=0;

thay x=-1 => a-b=0;

=>Đpcm

Đừng gọi tôi là Jung Hae...
Xem chi tiết
 Mashiro Shiina
2 tháng 5 2018 lúc 21:50

Ta có: \(x^4;2x^2\ge0\forall x\in R\)

\(\Rightarrow A\left(x\right)=x^4+2x^2+4>0\left(đpcm\right)\)

chú tuổi gì
3 tháng 5 2018 lúc 10:00

Ta có :

x\(^4\)và2x\(^2\)\(\ge0\) Do có số mũ chẵn

\(\Rightarrow A\left(x\right)=x^4+2x^2+4>0\)

\(\Leftrightarrow dpcm\)

Nguyễn Thị Mai Anh
3 tháng 5 2018 lúc 18:25

Có: \(A\left(x\right)=x^4+2x^2+4=\left(x^2\right)^2+2x^2.1+1^2+3=\left(x^2+1\right)^2+3\)

Có: \(x^2\ge0\Rightarrow x^2+1\ge1\)

\(\Rightarrow\left(x^2+1\right)^2\ge1\)

\(\Rightarrow\left(x^2+1\right)^2+3\ge4\)

\(\Rightarrow A\left(x\right)>0\)