Cho đa thức Ax= \(x^4+x^2+4\)chứng tỏ rằng Ax>0 với mọi x\(\in\)R
1.Cho đa thức f(x)=ax2 + bx + c với a, b, c là các hệ số nguyên. Chứng minh: f(x) + f(-x) ⋮ 2 với mọi số nguyên x .
2.Cho đa thức P(x)=ax+b (a, b ∈ Z;a ≠0). Chứng minh rằng:/P(2018) - P(1)/ ≥ 2017
3.Cho đa thức f(x) =2x2 + 3x +1.Chứng tỏ f(2n) - f(n) ⋮ 3.
4.Cho đa thức f(x) = 5x+1. Với 2 số a và b (a<b).
5.Cho đa thức f(x) = ax + b với a≠0, a ϵ Z. Chứng tỏ rằng /f (2017) - f(1)/ ≥ 2016.
giúp mình với!!!
Cho đa thức Q(x)=ax^2+bx+c
a) biết 5a+b+2c=0 . Chứng tỏ rằng Q(x).Q(-1) < hoặc = 0
b) biết Q(x)=0 với mọi x . Chứng tỏ rằng a=b=c=0
Bài 1: Cho đa thức bậc nhất: f(x) = ax + b và g(x) = bx + a (a và b khác 0). Giả sử đa thức f(x) có nghiệm là x0, tìm nghiệm của đa thức g(x)
Bài 2: Chứng tỏ rằng f(x) = -8x4 + 6x3 - 4x2 + 2x - 1 không có nghiệm nguyên.
Bài 3: Cho đa thức f(x) = ax3 + bx2 + cx + d có giá trị nguyên với mọi x thuộc Z. Chứng tỏ rằng 6a và 2b là các số nguyên
a,Cho đa thức f(x)=ax+b (a khác 0). Biết f(0)=0, chứng minh rằng F(x)=-f(-x)với mọi x
b,Đa thức f(x)=ax^2=bx+c (a khác 0).Biết F(1)=F(-1), chứng minh rằng f(x) với mọi x
cho đa thức A(x)=x^4+x^2 +4 chứng tỏ rằng A(x) >0 với mọi x thuộc R
Nhận thấy \(\hept{\begin{cases}x^4\ge0\forall x\\x^2\ge0\forall x\end{cases}}\Rightarrow x^4+x^2\ge0\Rightarrow x^4+x^2+4\ge4>0\forall x\)
=>A(x) > 0 \(\forall x\inℝ\)
Cho đa thức A(x) =x^4+2x^2 + 4 .Chứng tỏ rằng A(x)>0 với mọi x thuộc R
A(x)=x4+2x2+4
=x4+x2+x2+1+3
=x2.(x2+1)+(x2+1)+3
=(x2+1)(x2+1)+3
=(x2+1)+3>0 với mọi x thuộc R
Cho đa thức A(x) =x^4+2x^2 + 4 .Chứng tỏ rằng A(x)>0 với mọi x thuộc R
Cho đa thức P(x) = c + bx + ax ^ 2 Biểt P(x) =0, với mọi x. , Chứng tỏ a = b = c = 0
P(x)= 0 với mọi x nên:
thay x = 0 => c=0;
thay x = 1 => a+b=0;
thay x=-1 => a-b=0;
=>Đpcm
Cho đa thức A(x)= x4 + 2x2 + 4 .
Chứng tỏ rằng với mọi A(x)>0 với mọi x ∈ R .
Ta có: \(x^4;2x^2\ge0\forall x\in R\)
\(\Rightarrow A\left(x\right)=x^4+2x^2+4>0\left(đpcm\right)\)
Ta có :
x\(^4\)và2x\(^2\)\(\ge0\) Do có số mũ chẵn
\(\Rightarrow A\left(x\right)=x^4+2x^2+4>0\)
\(\Leftrightarrow dpcm\)
Có: \(A\left(x\right)=x^4+2x^2+4=\left(x^2\right)^2+2x^2.1+1^2+3=\left(x^2+1\right)^2+3\)
Có: \(x^2\ge0\Rightarrow x^2+1\ge1\)
\(\Rightarrow\left(x^2+1\right)^2\ge1\)
\(\Rightarrow\left(x^2+1\right)^2+3\ge4\)
\(\Rightarrow A\left(x\right)>0\)