Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 3 2018 lúc 5:19

Đáp án C

Dựa vào dữ kiện đề bài ta có thể suy ra tổng  S là tổng của cấp số nhân lùi vô hạn với công bội 

q = 1 4 ⇒ S = S 1 1 − q = a 3 3 4 . 1 4 1 − 1 4 = a 2 3 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 9 2018 lúc 7:10

Đáp án C

Dựa vào dữ kiện đề bài ta có thể suy ra tổng  S là tổng của cấp số nhân lùi vô hạn với công bội  q = 1 4 ⇒ S = S 1 1 − q = a 3 3 4 . 1 4 1 − 1 4 = a 2 3 12

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
22 tháng 9 2023 lúc 21:29

Tham khảo:

+) \(\left( {{{\rm{p}}_{\rm{n}}}} \right)\) là dãy số chu vi của các tam giác theo thứ tự \({\rm{ABC}},{{\rm{A}}_1}\;{{\rm{B}}_1}{{\rm{C}}_1}, \ldots \)

Ta có:

 \({{\rm{p}}_2} = {p_{\Delta {A_1}{B_1}{C_1}}} = \frac{a}{2} + \frac{a}{2} + \frac{a}{2} = \frac{1}{2} \cdot (3a) = \frac{1}{2} \cdot {p_1}\)

\(\begin{array}{l}{{\rm{p}}_3} = {p_{\Delta {A_2}{B_2}{C_2}}} = \frac{a}{4} + \frac{a}{4} + \frac{a}{4} = {\left( {\frac{1}{2}} \right)^2} \cdot (3a) = {\left( {\frac{1}{2}} \right)^2} \cdot {p_1}\\ \ldots \\{p_{\Delta {A_n}{B_n}{C_n}}} = {\left( {\frac{1}{2}} \right)^{n - 1}} \cdot {p_1}\\...\end{array}\)

\( \Rightarrow \mathop {\lim }\limits_{n \to \infty } {p_n} = \mathop {\lim }\limits_{n \to \infty } \left( {{{\left( {\frac{1}{2}} \right)}^{n - 1}} \cdot (3a)} \right) = \mathop {\lim }\limits_{n \to \infty } {\left( {\frac{1}{2}} \right)^{n - 1}} \cdot \mathop {\lim }\limits_{n \to \infty } (3a) = 0.3a = 0.\)

+)\(\left( {{{\rm{S}}_n}} \right)\) là dãy số diện tích của các tam giác theo thứ tự \({\rm{ABC}},{{\rm{A}}_1}\;{{\rm{B}}_1}{{\rm{C}}_1}, \ldots \)

Gọi \(h\) là chiều cao của tam giác \({\rm{ABC}}\) và \({\rm{h}} = \frac{{a\sqrt 3 }}{2}\).

Ta có:

\(\begin{array}{l}{{\rm{S}}_3} = {S_{\Delta {A_2}{B_2}{C_2}}} = \frac{1}{2} \cdot \frac{a}{4} \cdot \frac{h}{4} = {\left( {\frac{1}{4}} \right)^2} \cdot \left( {\frac{1}{2}ah} \right) = {\left( {\frac{1}{4}} \right)^2} \cdot {S_1}\\ \ldots \\{S_{\Delta {A_n}{B_n}{C_n}}} = {\left( {\frac{1}{4}} \right)^{n - 1}} \cdot {S_1}\\ \ldots \end{array}\)

\( \Rightarrow \mathop {\lim }\limits_{n \to \infty } {S_n} = \mathop {\lim }\limits_{n \to \infty } \left( {{{\left( {\frac{1}{4}} \right)}^{n - 1}} \cdot {S_1}} \right) = \mathop {\lim }\limits_{n \to \infty } {\left( {\frac{1}{4}} \right)^{n - 1}} \cdot \mathop {\lim }\limits_{n \to \infty } \left( {\frac{1}{2}ah} \right) = 0 \cdot \frac{1}{2}ah = 0\).

 

b) +) Ta có \(\left( {{{\rm{p}}_{\rm{n}}}} \right)\) là một cấp số nhân lùi vô hạn với số hạng đầu \({{\rm{p}}_1}\) = 3a và công bội \({\rm{q}} = \frac{1}{2}\) thỏa mãn \(|q| < 1\) có tổng:

\({p_1} + {p_2} +  \ldots  + {p_n} +  \ldots  = \frac{{3a}}{{1 - \frac{1}{2}}} = 6a\)

+) Ta có \(\left( {{{\rm{S}}_n}} \right)\) là một cấp số nhân lùi vô hạn với số hạng đầu \({{\rm{S}}_1} = \frac{1}{2}ah\) và công bội \(q = \frac{1}{4}\) thỏa mãn \(|q| < 1\) có tổng:

\({S_1} + {S_2} +  \ldots  + {S_n} +  \ldots  = \frac{{\frac{1}{2}ah}}{{1 - \frac{1}{4}}} = \frac{2}{3}ah = \frac{2}{3}a.\frac{{a\sqrt 3 }}{2} = \frac{{{a^2}\sqrt 3 }}{3}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 11 2019 lúc 18:12

Chọn D

Lời giải. Số tam giác tạo thành có 3 đỉnh là 3 đỉnh của đa giác là  C n 3

Số tam giác tạo thành có đúng 2 cạnh là cạnh của đa giác là n

Số tam giác tạo thành có đúng 1 cạnh là cạnh của đa giác là n(n-4)

(điều kiện n ∈ ℕ   v à   n < 4 )

→ số tam giác tạo thành không có cạnh nào là cạnh của đa giác là

Theo giả thiết, ta có

⇔ n = 35 ( t h ỏ a   m ã n ) n = 4 ( l o ạ i )

Nguyễn Xuân Vinh
Xem chi tiết
Nguyễn Khổng	Bách
19 tháng 4 2020 lúc 20:47

chắc như mọi người nói

Khách vãng lai đã xóa
Dương Hồng Bảo Phúc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 4 2019 lúc 12:02

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 3 2019 lúc 18:04

a)

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

b)

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

c)

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

d)

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

e)

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

f)

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

g)

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

h)

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

i)

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 7 2019 lúc 3:52


Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 10 2018 lúc 9:08

Đáp án C

Nhận xét: Mỗi tam giác được lập thành do một cách chọn 3 điểm sao cho 3 điểm đó không thẳng hàng, tức là không cùng nằm trên một cạnh của tam giác ABC.

Chọn ngẫu nhiên 3 điểm từ n + 6 điểm đã cho có: C n + 6 3  (cách)

Chọn 3 điểm chỉ nằm trên đúng 1 cạnh của tam giác ABC có: C 4 3 + C n 3  (cách)

Số tam giác lập thành là: