Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần chí công
Xem chi tiết
Lê Minh Thuận
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 1 2024 lúc 20:32

(2x+1)(y-3)=48

mà 2x+1 lẻ; y-3>=-3 vì x,y là các số tự nhiên

nên \(\left(2x+1\right)\left(y-3\right)=1\cdot48=3\cdot16\)

=>\(\left(2x+1;y-3\right)\in\left\{\left(1;48\right);\left(3;16\right)\right\}\)

=>\(\left(2x;y\right)\in\left\{\left(0;51\right);\left(2;19\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(0;51\right);\left(1;19\right)\right\}\)

mà x,y là các số tự nhiên khác 0

nên \(\left(x;y\right)=\left(1;19\right)\)

=>\(x\cdot y=1\cdot19=19\) là số nguyên tố

Trần Hải Phong
Xem chi tiết
Trần Xuân Ngọc
17 tháng 12 2015 lúc 22:25

Áp dụng tính chất DTSBN ta có:

x-1/3=y-2/2=z-3/1=x-1+y-2+z-3/3+2+1=x+y+z-6/6=30-6/6=24/6=4

Suy ra: x-1/3=y-2/2=z-3/1=4

Suy ra: x-1=12      y-2=8              z-3=4

Suy ra: x=13          y=10            z=7

Suy ra: x.y-y.z=13.10-10.7=130-70=60

Nguyen Hai Anh
Xem chi tiết
Nguyễn Duy Anh Quốc
Xem chi tiết
Hoàng Nguyễn Bảo
12 tháng 8 2018 lúc 22:27

Aps dụng bđt coossi rồi tách ghepos nha bạn

Hoàng Nguyễn Bảo
12 tháng 8 2018 lúc 22:28

v cả quốc béo

Trần Lê Khả Tú
Xem chi tiết
nhat
Xem chi tiết
nguyenviethung
Xem chi tiết
Minh Hiếu
28 tháng 9 2023 lúc 14:51

\(\left(x-2\right)^4+\left(2y-1\right)^{2024}\le0\left(1\right)\)

Vì \(\left\{{}\begin{matrix}\left(x-2\right)^4\ge0\forall x\\\left(2y-1\right)^{2024}\ge0\forall x\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}\ge0\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(M=21.2^2.\dfrac{1}{2}+4.2.\left(\dfrac{1}{2}\right)^2=21.2+4.2.\dfrac{1}{4}=42+2=44\)

Toru
28 tháng 9 2023 lúc 14:53

Ta có: \(\left(x-2\right)^4\ge0\forall x\)

           \(\left(2y-1\right)^{2024}\ge0\forall y\)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}\ge0\forall x;y\)

Mặt khác: \(\left(x-2\right)^4+\left(2y-1\right)^{2024}\le0\)

nên \(\left(x-2\right)^4+\left(2y-1\right)^{2024}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^4=0\\\left(2y-1\right)^{2024}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

Thay \(x=2\) và \(y=\dfrac{1}{2}\) vào \(M\), ta được:

\(M=21\cdot2^2\cdot\dfrac{1}{2}+4\cdot2\cdot\left(\dfrac{1}{2}\right)^2\)

\(=42+2\)

\(=44\)

Vậy \(M=44\) tại \(x=2;y=\dfrac{1}{2}\).

#\(Toru\)

Thơ Nụ =))
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 1 2024 lúc 20:07

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2=2-xy\)

\(\Rightarrow2-xy\ge0\)

\(\Rightarrow xy\le2\)

\(A_{max}=2\) khi \(\left(x;y\right)=\left(1;2\right);\left(-1;-2\right)\)