Bài 6: Lũy thừa của một số hữu tỉ (tiếp theo...)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyenviethung

M=21.x^2.y+4.x.y^2 với x,y thỏa mãn (x-2)^4+(2y-1)^2024 ≤ 0

Minh Hiếu
28 tháng 9 2023 lúc 14:51

\(\left(x-2\right)^4+\left(2y-1\right)^{2024}\le0\left(1\right)\)

Vì \(\left\{{}\begin{matrix}\left(x-2\right)^4\ge0\forall x\\\left(2y-1\right)^{2024}\ge0\forall x\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}\ge0\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(M=21.2^2.\dfrac{1}{2}+4.2.\left(\dfrac{1}{2}\right)^2=21.2+4.2.\dfrac{1}{4}=42+2=44\)

Toru
28 tháng 9 2023 lúc 14:53

Ta có: \(\left(x-2\right)^4\ge0\forall x\)

           \(\left(2y-1\right)^{2024}\ge0\forall y\)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}\ge0\forall x;y\)

Mặt khác: \(\left(x-2\right)^4+\left(2y-1\right)^{2024}\le0\)

nên \(\left(x-2\right)^4+\left(2y-1\right)^{2024}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^4=0\\\left(2y-1\right)^{2024}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

Thay \(x=2\) và \(y=\dfrac{1}{2}\) vào \(M\), ta được:

\(M=21\cdot2^2\cdot\dfrac{1}{2}+4\cdot2\cdot\left(\dfrac{1}{2}\right)^2\)

\(=42+2\)

\(=44\)

Vậy \(M=44\) tại \(x=2;y=\dfrac{1}{2}\).

#\(Toru\)


Các câu hỏi tương tự
Trang Nguyễn
Xem chi tiết
Nguyễn Lê Quỳnh Chi
Xem chi tiết
trịnh nguyễn gia hân
Xem chi tiết
Park Chanyeol
Xem chi tiết
nguyen dieu huong
Xem chi tiết
phương thảo nguyễn
Xem chi tiết
Mai Chi Nguyễn
Xem chi tiết
Ichigo
Xem chi tiết
Lê Chi
Xem chi tiết